相关性
计算机科学
重症监护室
空间相关性
数据挖掘
人工智能
医学
重症监护医学
数学
电信
几何学
作者
Weizhi Nie,Yuhe Yu,Chen Zhang,Dan Song,Lina Zhao,Yunpeng Bai
出处
期刊:IEEE Transactions on Biomedical Engineering
[Institute of Electrical and Electronics Engineers]
日期:2023-08-30
卷期号:71 (2): 583-595
被引量:1
标识
DOI:10.1109/tbme.2023.3309956
摘要
Recent advancements in medical information technology have enabled electronic health records (EHRs) to store comprehensive clinical data which has ushered healthcare into the era of "big data". However, medical data are rather complicated, making problem-solving in healthcare be limited in scope and comprehensiveness. The rapid development of deep learning in recent years has opened up opportunities for leveraging big data in healthcare. In this article we introduce a temporal-spatial correlation attention network (TSCAN) to address various clinical characteristic prediction problems, including mortality prediction, length of stay prediction, physiologic decline detection, and phenotype classification. Leveraging the attention mechanism model's design, our approach efficiently identifies relevant items in clinical data and temporally correlated nodes based on specific tasks, resulting in improved prediction accuracy. Additionally, our method identifies crucial clinical indicators associated with significant outcomes, which can inform and enhance treatment options. Our experiments utilize data from the publicly accessible Medical Information Mart for Intensive Care (MIMIC-IV) database. Finally, our approach demonstrates notable performance improvements of 2.0% (metric) compared to other SOTA prediction methods. Specifically, we achieved an impressive 90.7% mortality rate prediction accuracy and 45.1% accuracy in length of stay prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI