Temporal-Spatial Correlation Attention Network for Clinical Data Analysis in Intensive Care Unit

相关性 计算机科学 重症监护室 空间相关性 数据挖掘 人工智能 医学 重症监护医学 数学 电信 几何学
作者
Weizhi Nie,Yuhe Yu,Chen Zhang,Dan Song,Lina Zhao,Yunpeng Bai
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 583-595 被引量:3
标识
DOI:10.1109/tbme.2023.3309956
摘要

Recent advancements in medical information technology have enabled electronic health records (EHRs) to store comprehensive clinical data which has ushered healthcare into the era of "big data". However, medical data are rather complicated, making problem-solving in healthcare be limited in scope and comprehensiveness. The rapid development of deep learning in recent years has opened up opportunities for leveraging big data in healthcare. In this article we introduce a temporal-spatial correlation attention network (TSCAN) to address various clinical characteristic prediction problems, including mortality prediction, length of stay prediction, physiologic decline detection, and phenotype classification. Leveraging the attention mechanism model's design, our approach efficiently identifies relevant items in clinical data and temporally correlated nodes based on specific tasks, resulting in improved prediction accuracy. Additionally, our method identifies crucial clinical indicators associated with significant outcomes, which can inform and enhance treatment options. Our experiments utilize data from the publicly accessible Medical Information Mart for Intensive Care (MIMIC-IV) database. Finally, our approach demonstrates notable performance improvements of 2.0% (metric) compared to other SOTA prediction methods. Specifically, we achieved an impressive 90.7% mortality rate prediction accuracy and 45.1% accuracy in length of stay prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Nangong采纳,获得10
1秒前
寻梦完成签到,获得积分10
2秒前
ZHY发布了新的文献求助10
2秒前
科研乞讨专员完成签到,获得积分10
2秒前
邬不污完成签到,获得积分10
2秒前
夏天完成签到,获得积分10
2秒前
Owen应助yao采纳,获得10
2秒前
郝田田完成签到,获得积分10
3秒前
4秒前
5秒前
流子完成签到,获得积分10
6秒前
6秒前
wyfyq完成签到,获得积分10
6秒前
7秒前
Key发布了新的文献求助10
7秒前
大模型应助xiaxianong采纳,获得30
7秒前
8秒前
Kalimba完成签到,获得积分10
9秒前
hff发布了新的文献求助10
9秒前
ybdx完成签到,获得积分10
9秒前
专注水杯完成签到,获得积分10
10秒前
cindy完成签到,获得积分10
10秒前
GL完成签到 ,获得积分10
10秒前
11秒前
11秒前
balmy完成签到 ,获得积分10
11秒前
ddd完成签到,获得积分10
11秒前
Struggle发布了新的文献求助10
12秒前
传奇3应助zoiaii采纳,获得10
13秒前
13秒前
每天一篇文献的小王完成签到,获得积分20
13秒前
hino发布了新的文献求助10
14秒前
不安的白昼完成签到 ,获得积分10
14秒前
14秒前
FashionBoy应助moon采纳,获得10
14秒前
可爱的函函应助冷傲熊猫采纳,获得50
15秒前
15秒前
华仔应助一头猪采纳,获得10
15秒前
fan完成签到,获得积分10
15秒前
充电宝应助liguanyu1078采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479