Agricultural Sustainability in the Age of Deep Learning: Current Trends, Challenges, and Future Trajectories

持续性 农业 粮食安全 维持 管理(神学) 环境资源管理 工程伦理学 环境伦理学 业务 政治学 工程类 生态学 经济 法学 政治 哲学 生物
作者
Mona Mohamed
标识
DOI:10.61185/smij.2023.44102
摘要

Agriculture stands as the essential foundation of human sustenance, confronting the dual challenge of providing for a burgeoning global populace while safeguarding the integrity of the natural environment. This comprehensive review paper undertakes an exhaustive exploration of the continually evolving sphere of agricultural sustainability, traversing the multifaceted terrain of present-day trends, technological innovations, and the promising trajectories that lie ahead. From the vantage point of precision agriculture and climate-smart methodologies to the strategic integration of deep learning technologies, it offers a comprehensive examination of pioneering approaches that are redefining the agricultural domain. Within, it elucidates the intrinsic relationship between agriculture and sustainability, exemplifying how judicious resource management, the preservation of biodiversity, and the implementation of circular agricultural practices herald an epoch of conscientious agrarian practices. Moreover, this study casts an illuminative gaze toward the future of agriculture, wherein quantum intelligence, meta-learning, deep reinforcement learning, curriculum learning, intelligent nanothings, blockchain technology, and CRISPR gene editing converge to furnish innovative solutions. These solutions aspire to optimize crop yields, mitigate ecological footprint, and fortify global food security. As this academic voyage commences, it is incumbent to reiterate the pivotal assertion that sustainability in agriculture is not merely a desideratum; it is a compelling mandate, and the seeds of transformative innovation have been sown to recalibrate the world's approach to food production and environmental stewardship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助gaopeng采纳,获得10
2秒前
2秒前
2秒前
Emma完成签到 ,获得积分10
3秒前
wanci应助9way采纳,获得10
3秒前
3秒前
4秒前
Hoooo...发布了新的文献求助10
4秒前
Jasper应助Arya采纳,获得10
4秒前
小王Zzzz关注了科研通微信公众号
4秒前
5秒前
rrrrrrry发布了新的文献求助10
5秒前
5秒前
Lucas应助NINI采纳,获得10
5秒前
youxiaotong发布了新的文献求助30
6秒前
6秒前
makabaka完成签到,获得积分20
7秒前
思源应助Hoooo...采纳,获得10
8秒前
wjx发布了新的文献求助10
9秒前
9秒前
李爱国应助波子采纳,获得10
9秒前
9秒前
木木发布了新的文献求助10
9秒前
dgzsbldtm完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
苗条的寒珊完成签到,获得积分20
11秒前
发发发完成签到,获得积分10
11秒前
致尚发布了新的文献求助20
11秒前
橙子发布了新的文献求助10
11秒前
11秒前
我是老大应助卫元灵采纳,获得10
12秒前
SciGPT应助永夜的极光20采纳,获得10
13秒前
ZZH发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648