海马体
海马结构
内科学
内分泌学
超氧化物歧化酶
抗氧化剂
有氧运动
维生素E
维生素C
过氧化氢酶
医学
阿尔茨海默病
方差分析
化学
氧化应激
疾病
生物化学
作者
Seyed Ahmad Hashemi,Zahra Ghadimi,Hadi Ghaedi,Ayoub Hashemi
标识
DOI:10.1016/j.brainres.2023.148645
摘要
Alzheimer's disease (AD) is one of the most common neurological disorders and, researchers believe that the impairment of oxidant-antioxidant system plays an important role in its progression. The PI3K/NRF2 pathway has particular importance in increasing the expression of antioxidants. Thus present study aimed to investigate the effect of eight weeks of aerobic training (AT) with vitamin C (VC) on the expression pathway of antioxidants in the hippocampus tissue of trimethyltin chloride (TMT) induced Alzheimer's Disease Rats. In this experimental study, 28 male Sprague-Dawley rats (age 14–16 months, weight 270–320 g) were injected 10 mg/kg TMT and were divided into (1) TMT (n = 7), (2) TMT + VC (n = 7), (3) TMT + AT (n = 7) and (4) TMT + VC + AT (n = 7) groups. Also, 7 healthy rats without any intervention selected as healthy control (HC) group to investigate the effects of TMT on research variables. Groups 3 and 4 ran on the treadmill for eight weeks, for 15–48 min at a speed of 10–24 m/min. Also, groups 2 and 4 received 4 mg/kg VC orally. To measure PI3K, Nrf2, SOD and catalase in the hippocampus tissue of rats, ELISA method were used. To analyze the data, one-way analysis of variance with Tukey's post- hoc tests were used (P ≤ 0.05). The hippocampal values of Nrf2 and SOD in TMT + VC, TMT + AT and TMT + VC + AT groups were higher than TMT group (P = 0.001). Catalase in TMT + AT and TMT + VC + AT groups was higher than TMT group (P = 0.001). Also, catalase and PI3K were higher in the TMT + VC + AT group than the TMT + VC group (P = 0.05). PI3K levels of TMT + VC + AT group were higher than TMT + AT group (P = 0.02). It seems that AT and VC, both alone and in combination, play a role in improving the transcription pathway of antioxidants in the hippocampus tissue of TMT induced Alzheimer's disease Rats. Therefore, the combination of these two interventions is suggested to improve the antioxidant system.
科研通智能强力驱动
Strongly Powered by AbleSci AI