Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy

围产期心肌病 医学 心电图 心肌病 心脏病学 内科学 心力衰竭
作者
Young Mi Jung,Sora Kang,Jeong Min Son,Hak Seung Lee,Ga In Han,Ah-Hyun Yoo,Joon‐myoung Kwon,Chan‐Wook Park,Joong Shin Park,Jong Kwan Jun,Min Sung Lee,Seung Mi Lee
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (12): 101184-101184 被引量:1
标识
DOI:10.1016/j.ajogmf.2023.101184
摘要

Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear.This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy.This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiography within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learning analysis (AiTiALVSD software version 1.00.00 [AiTiALVSD], which was developed to screen for left ventricular systolic dysfunction in the general population), was evaluated for the identification of peripartum cardiomyopathy. In addition, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopathy. Results were obtained under a 95% confidence interval and considered significant when p < 0.05.Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead ECG was highly effective in detecting peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000) and area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value of 0.715 (0.499-0.951), 0.917 (0.760-1.000), 0.927 (0.890-0.964), 0.440 (0.245-0.635), and 0.994 (0.983-1.000), respectively. 1-Lead (lead I) artificial intelligence/machine learning algorithm also showed excellent performance; the area under the receiver operating characteristic, area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.944 (0.895-0.993), 0.520 (0.319-0.801), 0.833 (0.622-1.000), 0.880 (0.834-0.926), 0.303 (0.146-0.460), and 0.988 (0.972-1.000), respectively.The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-Lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美嘉美发布了新的文献求助10
1秒前
1秒前
an完成签到,获得积分10
2秒前
142857完成签到,获得积分20
3秒前
3秒前
mtt完成签到,获得积分10
6秒前
6秒前
xxx1234发布了新的文献求助10
6秒前
8秒前
蓝西装舞王完成签到,获得积分10
8秒前
9秒前
9秒前
Ava应助句号采纳,获得10
9秒前
大力翠丝发布了新的文献求助10
9秒前
THF完成签到,获得积分10
10秒前
江江完成签到,获得积分10
10秒前
10秒前
ttxxcdx完成签到,获得积分10
11秒前
13秒前
sky123发布了新的文献求助200
13秒前
kocupp发布了新的文献求助50
14秒前
NexusExplorer应助花开采纳,获得10
14秒前
北栀发布了新的文献求助10
15秒前
善学以致用应助wangayting采纳,获得30
15秒前
江江发布了新的文献求助30
16秒前
16秒前
乐观又lucky完成签到,获得积分10
17秒前
一蓑烟雨发布了新的文献求助10
18秒前
18秒前
思源应助123采纳,获得10
21秒前
淡淡菠萝发布了新的文献求助10
22秒前
倪莺媛发布了新的文献求助50
23秒前
23秒前
大力翠丝完成签到,获得积分10
23秒前
T_MC郭发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
25秒前
zzzhw发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153422
求助须知:如何正确求助?哪些是违规求助? 2804660
关于积分的说明 7860714
捐赠科研通 2462621
什么是DOI,文献DOI怎么找? 1310839
科研通“疑难数据库(出版商)”最低求助积分说明 629400
版权声明 601794