Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy

围产期心肌病 医学 心电图 心肌病 心脏病学 内科学 心力衰竭
作者
Young Mi Jung,Sora Kang,Jeong Min Son,Hak Seung Lee,Ga In Han,Ah-Hyun Yoo,Joon‐myoung Kwon,Chan‐Wook Park,Joong Shin Park,Jong Kwan Jun,Min Sung Lee,Seung Mi Lee
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:5 (12): 101184-101184 被引量:1
标识
DOI:10.1016/j.ajogmf.2023.101184
摘要

Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear.This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy.This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiography within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learning analysis (AiTiALVSD software version 1.00.00 [AiTiALVSD], which was developed to screen for left ventricular systolic dysfunction in the general population), was evaluated for the identification of peripartum cardiomyopathy. In addition, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopathy. Results were obtained under a 95% confidence interval and considered significant when p < 0.05.Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead ECG was highly effective in detecting peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000) and area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value of 0.715 (0.499-0.951), 0.917 (0.760-1.000), 0.927 (0.890-0.964), 0.440 (0.245-0.635), and 0.994 (0.983-1.000), respectively. 1-Lead (lead I) artificial intelligence/machine learning algorithm also showed excellent performance; the area under the receiver operating characteristic, area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.944 (0.895-0.993), 0.520 (0.319-0.801), 0.833 (0.622-1.000), 0.880 (0.834-0.926), 0.303 (0.146-0.460), and 0.988 (0.972-1.000), respectively.The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-Lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肱二头肌完成签到,获得积分10
2秒前
3秒前
小王发布了新的文献求助10
3秒前
多情自古空余恨完成签到,获得积分10
4秒前
Qionglin完成签到,获得积分10
6秒前
Bao完成签到 ,获得积分10
7秒前
7秒前
初夏微凉发布了新的文献求助30
7秒前
8秒前
书霂完成签到,获得积分10
8秒前
优秀含羞草完成签到,获得积分10
9秒前
宓沂完成签到,获得积分10
9秒前
vivre223完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
受伤凌蝶完成签到,获得积分10
11秒前
wenjiejiang完成签到,获得积分10
12秒前
12秒前
zly完成签到 ,获得积分10
13秒前
13秒前
李某人完成签到,获得积分10
13秒前
14秒前
小鱼完成签到,获得积分10
15秒前
小崽总完成签到,获得积分10
15秒前
挽风完成签到,获得积分10
18秒前
18秒前
dxs发布了新的文献求助10
18秒前
苹果沛柔完成签到,获得积分10
19秒前
111完成签到 ,获得积分10
19秒前
Amon完成签到 ,获得积分10
20秒前
结实寄柔完成签到,获得积分10
21秒前
dh完成签到,获得积分0
21秒前
超帅鸭子发布了新的文献求助10
22秒前
苹果沛柔发布了新的文献求助10
23秒前
25秒前
sure完成签到 ,获得积分10
27秒前
伶俐的不尤完成签到,获得积分10
27秒前
可乐完成签到,获得积分10
28秒前
乐乐乐乐乐乐应助scinature采纳,获得10
30秒前
angrymax完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029