Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy

围产期心肌病 医学 心电图 心肌病 心脏病学 内科学 心力衰竭
作者
Young Mi Jung,Sora Kang,Jeong Min Son,Hak Seung Lee,Ga In Han,Ah-Hyun Yoo,Joon‐myoung Kwon,Chan‐Wook Park,Joong Shin Park,Jong Kwan Jun,Min Sung Lee,Seung Mi Lee
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (12): 101184-101184 被引量:1
标识
DOI:10.1016/j.ajogmf.2023.101184
摘要

Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear.This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy.This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiography within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learning analysis (AiTiALVSD software version 1.00.00 [AiTiALVSD], which was developed to screen for left ventricular systolic dysfunction in the general population), was evaluated for the identification of peripartum cardiomyopathy. In addition, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopathy. Results were obtained under a 95% confidence interval and considered significant when p < 0.05.Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead ECG was highly effective in detecting peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000) and area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value of 0.715 (0.499-0.951), 0.917 (0.760-1.000), 0.927 (0.890-0.964), 0.440 (0.245-0.635), and 0.994 (0.983-1.000), respectively. 1-Lead (lead I) artificial intelligence/machine learning algorithm also showed excellent performance; the area under the receiver operating characteristic, area under the precision recovery curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.944 (0.895-0.993), 0.520 (0.319-0.801), 0.833 (0.622-1.000), 0.880 (0.834-0.926), 0.303 (0.146-0.460), and 0.988 (0.972-1.000), respectively.The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-Lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
愉快的夏菡完成签到,获得积分10
刚刚
研友_gnv61n完成签到,获得积分10
刚刚
zmy完成签到,获得积分10
刚刚
小蘑菇应助守约采纳,获得10
1秒前
1秒前
空白发布了新的文献求助10
2秒前
buno应助721采纳,获得20
2秒前
石阶上完成签到 ,获得积分10
2秒前
du完成签到 ,获得积分10
2秒前
Xu完成签到,获得积分10
3秒前
mmmm完成签到,获得积分10
3秒前
3秒前
情怀应助YY采纳,获得10
3秒前
懦弱的安珊完成签到,获得积分10
4秒前
Akim应助xiaokezhang采纳,获得10
4秒前
4秒前
柠木完成签到 ,获得积分10
4秒前
系统提示发布了新的文献求助10
4秒前
marigold完成签到,获得积分10
4秒前
Gaoge完成签到,获得积分10
5秒前
愉快的无招完成签到,获得积分10
5秒前
5秒前
HEIKU应助习习采纳,获得10
6秒前
6秒前
6秒前
6秒前
合适苗条完成签到,获得积分10
6秒前
Zn应助开水泡饼采纳,获得10
6秒前
科目三应助Liu采纳,获得10
7秒前
7秒前
eating完成签到,获得积分10
7秒前
李双艳完成签到,获得积分10
7秒前
英姑应助科研混子采纳,获得10
7秒前
li完成签到,获得积分10
8秒前
Hungrylunch应助woshiwuziq采纳,获得20
9秒前
合适苗条发布了新的文献求助10
9秒前
安静听白发布了新的文献求助10
9秒前
krystal发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678