材料科学
异质结
铁电性
光电子学
极化(电化学)
电介质
化学
物理化学
作者
Dong Wei,Yi Li,Gaofu Guo,Heng Yu,Yaqiang Ma,Yanan Tang,Zhen Feng,Xianqi Dai
标识
DOI:10.1088/1361-648x/acef89
摘要
To integrate two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) is regarded as an effective strategy to achieve multifunctional devices. The vdWHs with strong intrinsic ferroelectricity is promising for applications in the design of new electronic devices. The polarization reversal transitions of 2D ferroelectric Ga2O3layers provide a new approach to explore the electronic structure and optical properties of modulated WS2/Ga2O3vdWHs. The WS2/Ga2O3↑ and WS2/Ga2O3↓ vdWHs are designed to explore possible characteristics through the electric field and biaxial strain. The biaxial strain can effectively modulate the mutual transition of two mode vdWHs in type II and type I band alignment. The strain engineering enhances the optical absorption properties of vdWHs, encompassing excellent optical absorption properties in the range from infrared to visible to ultraviolet, ensuring promising applications in flexible electronics and optical devices. Based on the highly modifiable physical properties of the WS2/Ga2O3vdWHs, we have further explored the potential applications for the field-controlled switching of the channel in MOSFET devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI