Revealing the critical roles of silver species on TNT film for photocatalytic decomposition of volatile organic pollutants under UV or visible light irradiation: From mechanism study to scaled-up test

光催化 可见光谱 甲苯 光化学 分解 材料科学 催化作用 辐照 矿化(土壤科学) 甲醛 降级(电信) 纳米颗粒 化学工程 纳米技术 化学 有机化学 光电子学 电信 物理 计算机科学 核物理学 氮气 工程类
作者
Chengqiong Mao,Hao Ling,Lian Yi,Rongshu Zhu,Guan Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145366-145366
标识
DOI:10.1016/j.cej.2023.145366
摘要

Ag nanoparticles are commonly employed as co-catalysts to promote photocatalytic reactions. In addition to their apparent roles as electron traps and catalytic active sites, nanoparticulate Ag can also generate hot electrons under visible light irradiation, which endows visible light photocatalytic activity to its supporting material. On the other hand, Ag0 can be easily converted to Ag2O, however, few studies focus on its formation and roles during the photocatalytic process. In this work, we have successfully fabricated and optimized the preparation procedures of titania nanotube (TNT) and Ag species deposited TNT to get the optimum photochemical activities of Ag modified TNT. Specifically, the roles of Ag species on TNT film have been investigated by photoelectrochemical (PEC) measurements and photocatalytic decomposition of volatile organic pollutants under UV or visible light irradiation. Toluene (30 ppm) can be effectively decomposed (∼83.3%) and mineralized (∼70.7%) by Ag species modified TNT in 3 h under UV–visible light irradiation, while the degradation and mineralization ratios are only about 60.0% and 33.3% under visible light irradiation. The results demonstrate that appropriate Ag/Ag2O ratio on TNT film are crucial for improving PEC and photocatalytic performance, and the interconversion between Ag and Ag2O influences the photochemical stability of Ag/TNT film. The scaled-up tests (∼1.0 m3 reactor) on the degradation of low concentration of toluene and formaldehyde prove that the optimized Ag/TNT film can be considered as a promising photocatalyst for indoor air purification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶余山本完成签到 ,获得积分10
1秒前
4秒前
害羞的醉卉完成签到 ,获得积分10
5秒前
栗子壳应助熊仔一百采纳,获得50
6秒前
无花果应助沈佳琪采纳,获得10
6秒前
6秒前
完美世界应助djs采纳,获得10
6秒前
7秒前
oydent发布了新的文献求助10
8秒前
悦耳的乐松完成签到,获得积分10
9秒前
9秒前
yangkai发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
LL完成签到,获得积分10
12秒前
风羽完成签到,获得积分10
12秒前
12秒前
是冬天完成签到 ,获得积分10
14秒前
一方通行发布了新的文献求助10
14秒前
紫禁城的雪花完成签到,获得积分10
15秒前
lcc完成签到 ,获得积分10
15秒前
Crazy发布了新的文献求助10
16秒前
月亮发布了新的文献求助10
16秒前
17秒前
隐形曼青应助眼里有星星采纳,获得10
17秒前
小马甲应助体贴的乐松采纳,获得10
18秒前
subass发布了新的文献求助10
18秒前
李健应助夜夜采纳,获得10
18秒前
52Hertz完成签到,获得积分10
18秒前
19秒前
风中听枫完成签到 ,获得积分10
19秒前
柴子完成签到,获得积分10
21秒前
加油完成签到,获得积分10
22秒前
星辰大海应助执着千筹采纳,获得10
25秒前
震动的小草完成签到,获得积分10
26秒前
zy完成签到,获得积分10
26秒前
66666完成签到,获得积分10
28秒前
紫禁城的雪天完成签到,获得积分10
29秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479574
求助须知:如何正确求助?哪些是违规求助? 3070143
关于积分的说明 9116766
捐赠科研通 2761878
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700985
科研通“疑难数据库(出版商)”最低求助积分说明 699985