GCNH: A Simple Method For Representation Learning On Heterophilous Graphs

计算机科学 代表(政治) 理论计算机科学 简单 图形 简单(哲学) 节点(物理) 集合(抽象数据类型) 人工智能 机器学习 政治 认识论 工程类 政治学 哲学 程序设计语言 法学 结构工程
作者
Andrea Cavallo,Claas Grohnfeldt,Michele Russo,Giulio Lovisotto,Luca Vassio
标识
DOI:10.1109/ijcnn54540.2023.10191196
摘要

Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs, i.e., graphs in which edges tend to connect nodes of the same type. Yet, achievement of consistent GNN performance on heterophilous graphs remains an open research problem. Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs, trading off model simplicity for prediction accuracy. However, these models fail to capture basic graph properties, such as neighborhood label distribution, which are fundamental for learning. In this work, we propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios. GCNH learns and combines separate representations for a node and its neighbors, using one learned importance coefficient per layer to balance the contributions of center nodes and neighborhoods. We conduct extensive experiments on eight real-world graphs and a set of synthetic graphs with varying degrees of heterophily to demonstrate how the design choices for GCNH lead to a sizable improvement over a vanilla GCN. Moreover, GCNH outperforms state-of-the-art models of much higher complexity on four out of eight benchmarks, while producing comparable results on the remaining datasets. Finally, we discuss and analyze the lower complexity of GCNH, which results in fewer trainable parameters and faster training times than other methods, and show how GCNH mitigates the oversmoothing problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
互助应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
思源应助科研通管家采纳,获得30
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
打打应助科研通管家采纳,获得10
2秒前
开放鸿涛应助科研通管家采纳,获得10
2秒前
2秒前
charint应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
开放鸿涛应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
JamesPei应助莫湫采纳,获得10
3秒前
wsyiming完成签到,获得积分10
3秒前
亗sui发布了新的文献求助10
4秒前
5秒前
英姑应助三只兔子采纳,获得10
5秒前
ash发布了新的文献求助10
5秒前
5秒前
古风发布了新的文献求助10
5秒前
6秒前
幽默书瑶发布了新的文献求助10
8秒前
大个应助xiaodu采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
zdd完成签到,获得积分10
10秒前
自洽发布了新的文献求助10
11秒前
power完成签到,获得积分10
11秒前
亗sui完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
赘婿应助侠侠大王采纳,获得10
14秒前
16秒前
16秒前
舒服的寒松完成签到 ,获得积分10
16秒前
大方的乌冬面完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172