CACDU-Net: A Novel DoubleU-Net Based Semantic Segmentation Model for Skin Lesions Detection in Images

计算机科学 分割 人工智能 联营 棱锥(几何) 模式识别(心理学) 图像分割 深度学习 编码(内存) 特征提取 领域(数学) 机器学习 物理 数学 纯数学 光学
作者
Shengnan Hao,Haotian Wu,Chengyuan Du,Xinyi Zeng,Zhanlin Ji,Xueji Zhang,Иван Ганчев
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 82449-82463
标识
DOI:10.1109/access.2023.3300895
摘要

Lesion segmentation is a critical task in the field of dermatology as it can aid in the early detection and diagnosis of skin diseases. Deep learning techniques have shown great potential in achieving accurate lesion segmentation. With the help of these techniques, lesion segmentation process can be automated, reducing the impact of manual operations and subjective judgments. This aids in improving the work efficiency of medical professionals by saving their time and lowering the effort made, and in enabling better allocation of healthcare resources. This paper proposes a novel CACDU-Net model, based on the DoubleU-Net model, to perform skin lesion segmentation better. For this, firstly, the proposed model adopts a pre-trained ConvNeXt-T as an encoding backbone network to provide rich image features. Secondly, specially designed ConvNeXt Attention Convolutional Blocks (CACB) are utilized by CACDU-Net to refine feature extraction by combining ConvNeXt blocks with multiple attention mechanisms. Thirdly, the proposed model utilizes a specially designed Asymmetric Convolutional Atrous Spatial Pyramid Pooling (ACASPP) module between the encoding and decoding parts, using atrous convolutions at different scales to capture contextual information at different levels. The image segmentation performance of the proposed model is evaluated against existing mainstream models on two skin lesion public datasets, ISIC2018 and PH2, as well as on a private dataset. The obtained results demonstrate that CACDU-Net achieves excellent results, especially based on the two core metrics used for the evaluation of image segmentation, namely the Intersection over Union ( IoU ) and Dice similarity coefficient ( DSC ), according to which it surpasses all other models. Moreover, experiments conducted on the PH2 dataset show that CACDU-Net has strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
授业解惑的哑铃完成签到,获得积分10
刚刚
ni完成签到,获得积分10
刚刚
木木完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
凌辰完成签到,获得积分10
4秒前
5秒前
木木发布了新的文献求助10
6秒前
DH完成签到 ,获得积分10
6秒前
青山完成签到,获得积分10
7秒前
正直凌文发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
王星星发布了新的文献求助10
7秒前
Lee发布了新的文献求助10
9秒前
共享精神应助123采纳,获得10
9秒前
Heisenberg完成签到,获得积分10
9秒前
静夜澜迷失完成签到 ,获得积分10
9秒前
风平浪静发布了新的文献求助10
10秒前
酷酷的采珊完成签到,获得积分10
11秒前
青山发布了新的文献求助10
11秒前
sci来完成签到,获得积分10
12秒前
Ava应助刘燕山采纳,获得10
13秒前
静夜澜迷失关注了科研通微信公众号
13秒前
外向一一发布了新的文献求助10
13秒前
orixero应助王星星采纳,获得10
16秒前
18秒前
明理的延恶完成签到 ,获得积分10
18秒前
19秒前
700w发布了新的文献求助10
20秒前
22秒前
hhhh完成签到,获得积分20
23秒前
张于小丸子完成签到 ,获得积分10
23秒前
vain完成签到,获得积分10
23秒前
微暖完成签到,获得积分10
24秒前
24秒前
溜溜很优秀完成签到,获得积分10
25秒前
外向一一完成签到,获得积分10
26秒前
黎乐荷发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068