CACDU-Net: A Novel DoubleU-Net Based Semantic Segmentation Model for Skin Lesions Detection in Images

计算机科学 分割 人工智能 联营 棱锥(几何) 模式识别(心理学) 图像分割 深度学习 编码(内存) 特征提取 领域(数学) 机器学习 物理 数学 纯数学 光学
作者
Shengnan Hao,Haotian Wu,Chengyuan Du,Xinyi Zeng,Zhanlin Ji,Xueji Zhang,Иван Ганчев
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 82449-82463
标识
DOI:10.1109/access.2023.3300895
摘要

Lesion segmentation is a critical task in the field of dermatology as it can aid in the early detection and diagnosis of skin diseases. Deep learning techniques have shown great potential in achieving accurate lesion segmentation. With the help of these techniques, lesion segmentation process can be automated, reducing the impact of manual operations and subjective judgments. This aids in improving the work efficiency of medical professionals by saving their time and lowering the effort made, and in enabling better allocation of healthcare resources. This paper proposes a novel CACDU-Net model, based on the DoubleU-Net model, to perform skin lesion segmentation better. For this, firstly, the proposed model adopts a pre-trained ConvNeXt-T as an encoding backbone network to provide rich image features. Secondly, specially designed ConvNeXt Attention Convolutional Blocks (CACB) are utilized by CACDU-Net to refine feature extraction by combining ConvNeXt blocks with multiple attention mechanisms. Thirdly, the proposed model utilizes a specially designed Asymmetric Convolutional Atrous Spatial Pyramid Pooling (ACASPP) module between the encoding and decoding parts, using atrous convolutions at different scales to capture contextual information at different levels. The image segmentation performance of the proposed model is evaluated against existing mainstream models on two skin lesion public datasets, ISIC2018 and PH2, as well as on a private dataset. The obtained results demonstrate that CACDU-Net achieves excellent results, especially based on the two core metrics used for the evaluation of image segmentation, namely the Intersection over Union ( IoU ) and Dice similarity coefficient ( DSC ), according to which it surpasses all other models. Moreover, experiments conducted on the PH2 dataset show that CACDU-Net has strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nater1ver完成签到,获得积分10
1秒前
Zzoe_S发布了新的文献求助10
2秒前
nater4ver完成签到,获得积分20
7秒前
王科研完成签到,获得积分10
10秒前
liyutong完成签到 ,获得积分10
11秒前
nater2ver完成签到,获得积分10
15秒前
wangfaqing942完成签到 ,获得积分10
15秒前
chem完成签到,获得积分10
16秒前
白茶的雪完成签到,获得积分10
17秒前
哭泣的幻翠完成签到 ,获得积分10
17秒前
kkkim完成签到 ,获得积分10
18秒前
nater3ver完成签到,获得积分10
19秒前
21完成签到 ,获得积分10
21秒前
no_one完成签到,获得积分10
23秒前
qianci2009完成签到,获得积分10
23秒前
Ray完成签到 ,获得积分10
24秒前
虚心的爆米花完成签到,获得积分10
29秒前
小小智完成签到,获得积分10
30秒前
周茉完成签到,获得积分10
32秒前
liya完成签到,获得积分10
36秒前
yinshan完成签到 ,获得积分10
44秒前
Zzoe_S完成签到,获得积分10
45秒前
笨笨千亦完成签到 ,获得积分10
46秒前
48秒前
友好盼波完成签到,获得积分10
59秒前
了晨完成签到 ,获得积分10
1分钟前
ZZ完成签到,获得积分10
1分钟前
gyx完成签到,获得积分10
1分钟前
苏钰完成签到,获得积分10
1分钟前
KKKZ完成签到,获得积分10
1分钟前
开放又亦完成签到 ,获得积分10
1分钟前
1分钟前
腼腆的小熊猫完成签到 ,获得积分10
1分钟前
Shadow完成签到 ,获得积分10
1分钟前
俊逸沛菡完成签到 ,获得积分10
1分钟前
ccm应助一棵草采纳,获得10
1分钟前
carrot完成签到 ,获得积分10
1分钟前
结实的丹雪完成签到,获得积分10
1分钟前
liyanglin完成签到 ,获得积分10
1分钟前
HONGZHOU完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899906
捐赠科研通 2472894
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602144