CACDU-Net: A Novel DoubleU-Net Based Semantic Segmentation Model for Skin Lesions Detection in Images

计算机科学 分割 人工智能 联营 棱锥(几何) 模式识别(心理学) 图像分割 深度学习 编码(内存) 特征提取 领域(数学) 机器学习 物理 数学 纯数学 光学
作者
Shengnan Hao,Haotian Wu,Chengyuan Du,Xinyi Zeng,Zhanlin Ji,Xueji Zhang,Иван Ганчев
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 82449-82463
标识
DOI:10.1109/access.2023.3300895
摘要

Lesion segmentation is a critical task in the field of dermatology as it can aid in the early detection and diagnosis of skin diseases. Deep learning techniques have shown great potential in achieving accurate lesion segmentation. With the help of these techniques, lesion segmentation process can be automated, reducing the impact of manual operations and subjective judgments. This aids in improving the work efficiency of medical professionals by saving their time and lowering the effort made, and in enabling better allocation of healthcare resources. This paper proposes a novel CACDU-Net model, based on the DoubleU-Net model, to perform skin lesion segmentation better. For this, firstly, the proposed model adopts a pre-trained ConvNeXt-T as an encoding backbone network to provide rich image features. Secondly, specially designed ConvNeXt Attention Convolutional Blocks (CACB) are utilized by CACDU-Net to refine feature extraction by combining ConvNeXt blocks with multiple attention mechanisms. Thirdly, the proposed model utilizes a specially designed Asymmetric Convolutional Atrous Spatial Pyramid Pooling (ACASPP) module between the encoding and decoding parts, using atrous convolutions at different scales to capture contextual information at different levels. The image segmentation performance of the proposed model is evaluated against existing mainstream models on two skin lesion public datasets, ISIC2018 and PH2, as well as on a private dataset. The obtained results demonstrate that CACDU-Net achieves excellent results, especially based on the two core metrics used for the evaluation of image segmentation, namely the Intersection over Union ( IoU ) and Dice similarity coefficient ( DSC ), according to which it surpasses all other models. Moreover, experiments conducted on the PH2 dataset show that CACDU-Net has strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunyanghu369发布了新的文献求助30
1秒前
hdc12138完成签到,获得积分10
2秒前
飞龙在天完成签到,获得积分0
2秒前
狄淇儿完成签到 ,获得积分10
2秒前
吨吨完成签到,获得积分10
3秒前
小芒果完成签到,获得积分0
7秒前
8秒前
杰克李李完成签到,获得积分10
9秒前
pakiorder完成签到,获得积分20
11秒前
无心的雅霜完成签到,获得积分10
11秒前
1122完成签到,获得积分10
12秒前
王磊完成签到,获得积分10
12秒前
顺心醉蝶完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
zhao完成签到 ,获得积分10
13秒前
yuncong323发布了新的文献求助10
13秒前
gfasdjsjdsjd发布了新的文献求助30
15秒前
pan完成签到,获得积分10
15秒前
16秒前
17秒前
魔幻的妖丽完成签到 ,获得积分10
19秒前
王小凡完成签到 ,获得积分10
19秒前
20秒前
开心薯片发布了新的文献求助10
21秒前
ZXW完成签到,获得积分10
22秒前
莉莉发布了新的文献求助10
22秒前
眼睛大的擎苍完成签到,获得积分10
24秒前
xr完成签到,获得积分10
25秒前
ZORO完成签到,获得积分10
25秒前
26秒前
临时演员完成签到,获得积分10
27秒前
ABCDE完成签到,获得积分10
27秒前
taotao完成签到,获得积分10
27秒前
ED应助莉莉采纳,获得10
28秒前
ED应助莉莉采纳,获得10
28秒前
扣扣登陆完成签到 ,获得积分10
28秒前
29秒前
白日焰火完成签到 ,获得积分10
29秒前
30秒前
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022