仿射变换
匹配(统计)
Orb(光学)
计算机科学
人工智能
模式识别(心理学)
图像(数学)
Blossom算法
特征(语言学)
尺度不变特征变换
转化(遗传学)
一致性(知识库)
透视图(图形)
计算机视觉
图像匹配
算法
数学
语言学
统计
哲学
生物化学
化学
纯数学
基因
作者
Chao Xu,Huamin Yang,Sitong Yan,ziyun wang
摘要
Image matching is an essential technique in computer vision for many applications (e.g., image understanding). In order to improve the adaptability of previous matching algorithms to multi-source images (i.e., perspective and panoramic images) and increase the matching accuracy, we propose an improve Oriented FAST and Rotated BRIEF (ORB) matching algorithm. We first use the K-Nearest Neighbor (KNN) algorithm to roughly match the feature points extracted from the uniformly partitioned image grids and calculate their matching scores to obtain high scoring matching pairs. Then, we utilize the regional local consistency constraint and affine transformation verification of the Adaptive Local Affine Matching (AdaLAM) method to further refine the matching pairs. Finally, we perform matching experiments on both perspective and panoramic images and show better matching results than most previous matching approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI