Graph Convolutional Network with Morphometric Similarity Networks for Schizophrenia Classification

计算机科学 人工智能 神经影像学 模式识别(心理学) 图形 人口 相似性(几何) 编码 理论计算机科学 神经科学 生物 生物化学 基因 图像(数学) 社会学 人口学
作者
Hye Won Park,Seo Yeong Kim,Won Hee Lee
出处
期刊:Lecture Notes in Computer Science 卷期号:: 626-636
标识
DOI:10.1007/978-3-031-43907-0_60
摘要

There is significant interest in using neuroimaging data for schizophrenia classification. Graph convolutional networks (GCNs) provide great potential to improve schizophrenia classification using brain graphs derived from neuroimaging data. However, accurate classification of schizophrenia is still challenging due to the heterogeneity of schizophrenia and their subtle differences in neuroimaging features. This paper presents a new graph convolutional framework for population-based schizophrenia classification that leverages graph-theoretical measures of morphometric similarity networks inferred from structural MRI scans and incorporates variational edges to reinforce the learning process. Specifically, we construct individual morphometric similarity networks based on inter-regional similarity of multiple morphometric features (cortical thickness, surface area, gray matter volume, mean curvature, and Gaussian curvature) extracted from T1-weighted MRI. We then formulate an adaptive population graph where each node is represented by the topological features of individual morphometric similarity networks and each edge models the similarity between the topological features of the subjects and incorporates the phenotypic information. An encode module is devised to estimate the associations between phenotypic data of the subjects and to adaptively optimize the edge weights. Our proposed method is evaluated on a large dataset collected from nine sites, resulting in a total sample of 366 patients with schizophrenia and 590 healthy individuals. Experimental results demonstrate that our proposed method improves the classification performance over traditional machine learning algorithms, with a mean classification accuracy of 81.8%. The most salient regions contributing to classification are primarily identified in the middle temporal gyrus and superior temporal gyrus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeeya完成签到,获得积分10
刚刚
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
伦语发布了新的文献求助10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
xuzj应助科研通管家采纳,获得10
2秒前
xuzj应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
yull完成签到,获得积分10
3秒前
小巧书雪完成签到,获得积分10
6秒前
大大怪将军完成签到,获得积分10
7秒前
哈哈哈完成签到 ,获得积分0
7秒前
小怪完成签到,获得积分10
8秒前
爱吃泡芙完成签到,获得积分10
9秒前
白桃战士完成签到,获得积分10
10秒前
12秒前
qingchenwuhou完成签到 ,获得积分10
12秒前
XXX完成签到,获得积分10
13秒前
锡嘻完成签到 ,获得积分10
13秒前
14秒前
彗星入梦完成签到 ,获得积分10
14秒前
恋恋青葡萄完成签到,获得积分10
14秒前
隐形万言完成签到,获得积分10
16秒前
Time完成签到,获得积分10
16秒前
土木研学僧完成签到,获得积分10
17秒前
yjy完成签到 ,获得积分10
17秒前
A溶大美噶完成签到,获得积分10
17秒前
yar应助萨尔莫斯采纳,获得10
18秒前
Will发布了新的文献求助10
18秒前
美好的鹏笑完成签到,获得积分10
20秒前
啦啦啦啦啦完成签到,获得积分10
20秒前
LYegoist完成签到,获得积分10
22秒前
可爱的小丸子完成签到,获得积分10
22秒前
一川烟叶完成签到,获得积分10
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022