Waste Camellia oleifera shell-derived hierarchically porous carbon modified by Fe3O4 nanoparticles for capacitive removal of heavy metal ions

电容去离子 吸附 材料科学 纳米颗粒 化学工程 电极 水溶液中的金属离子 金属 碳纤维 电化学 纳米技术 化学 冶金 复合材料 有机化学 物理化学 复合数 工程类
作者
Ning Wang,Mingyue Wang,Hongying Quan,Shoujun Wang,Dezhi Chen
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:329: 125184-125184 被引量:21
标识
DOI:10.1016/j.seppur.2023.125184
摘要

Capacitive deionization is an efficient technology for water purification and treatment. The electrode material is crucial to improving the performance of capacitive deionization. Herein, Fe3O4 nanoparticles-modified hierarchically porous carbon (Fe3O4 NPs/HPC) was successfully synthesized by the pyrolysis of waste Camellia oleifera shell coupling with the post-modification. Owing to its unique structure and composition, the as-prepared Fe3O4 NPs/HPC delivered great potential in capacitive deionization and heavy metal removal. Under the current density of 0.5 A g-1, the Fe3O4 NPs/HPC electrode showed a high specific capacitance of 134.5 F g−1 in 1 M NaCl solution, much more than the bare HPC electrode of 99.9 F g−1. In addition, the Fe3O4 NPs/HPC electrode exhibited excellent cycle stability with negligible loss of capacitance after 1000 cycles at 2 A g-1. At an operating voltage of 1.2 V, the Fe3O4 NPs/HPC electrode released high uptake capacity of 34.22 and 39.52 mg g−1 for Cd(II) and Pb(II) ions, respectively. XPS spectra and competitive adsorption demonstrated that Cd(II) was mainly removed by the oxygen-containing groups of HPC through an electrosorption coupling with an electrodeposition multilayer process, but Pb(II) was uniformly adsorbed on the active sites including the oxygen-containing groups of HPC and the modified Fe3O4 NPs by a monolayer electrosorption process. The impressive results indicate that the as-prepared Fe3O4 NPs/HPC composites possess potential for the selective removal of heavy metal ions from saline wastewater.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助背后梦安采纳,获得10
1秒前
2秒前
2秒前
小红发布了新的文献求助10
3秒前
3秒前
酷波er应助薏_采纳,获得10
3秒前
5秒前
Akira发布了新的文献求助10
5秒前
顾矜应助HebingTang采纳,获得20
5秒前
田様应助小北采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
聪明无施完成签到 ,获得积分10
8秒前
8秒前
8秒前
科研土狗完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
小小下完成签到,获得积分20
10秒前
soda饼干完成签到 ,获得积分10
10秒前
11秒前
充电宝应助晴天采纳,获得10
11秒前
青山发布了新的文献求助10
11秒前
羞涩的千萍完成签到,获得积分10
11秒前
ning发布了新的文献求助10
11秒前
小熊发布了新的文献求助10
12秒前
Ava应助孙雪松采纳,获得10
13秒前
13秒前
14秒前
霍师傅发布了新的文献求助10
14秒前
领导范儿应助77222采纳,获得10
14秒前
14秒前
啦啦啦发布了新的文献求助10
14秒前
万能图书馆应助刘丰铭采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013