Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 哲学 语言学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:35
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助纯情的馒头采纳,获得10
1秒前
LLLnna完成签到,获得积分10
2秒前
ren完成签到,获得积分10
3秒前
3秒前
可耐的冰巧完成签到,获得积分10
4秒前
4秒前
9秒前
10秒前
风清扬发布了新的文献求助10
10秒前
君知行发布了新的文献求助10
10秒前
11秒前
13秒前
小刘同学发布了新的文献求助10
14秒前
KCC发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助XiaoZhu采纳,获得10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
y1439938345完成签到,获得积分10
18秒前
陶醉迎南完成签到,获得积分10
19秒前
19秒前
20秒前
顾懂发布了新的文献求助10
21秒前
21秒前
秋水揽星河完成签到,获得积分10
21秒前
orixero应助君知行采纳,获得10
21秒前
21秒前
zhoujunjie完成签到,获得积分10
22秒前
111发布了新的文献求助10
22秒前
杰里西完成签到,获得积分20
22秒前
勤劳绿柳完成签到 ,获得积分10
22秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
Cc发布了新的文献求助10
25秒前
27秒前
蓝天完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348