Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 哲学 语言学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:35
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分10
1秒前
一一应助有意义采纳,获得10
1秒前
1秒前
橘猫完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
求求你帮帮我完成签到,获得积分10
2秒前
共享精神应助珊珊采纳,获得10
2秒前
共享精神应助禹宛白采纳,获得10
2秒前
2秒前
3秒前
长情的小鸽子完成签到,获得积分10
3秒前
157295108发布了新的文献求助10
4秒前
烟花应助zxcvvbnm采纳,获得10
4秒前
4秒前
阔达如松发布了新的文献求助10
4秒前
WNL发布了新的文献求助10
4秒前
坚强水杯发布了新的文献求助60
5秒前
7秒前
善学以致用应助oue采纳,获得10
7秒前
7秒前
7秒前
HCT完成签到,获得积分10
8秒前
8秒前
8秒前
limerence发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助玥越采纳,获得10
9秒前
1chen完成签到 ,获得积分10
9秒前
10秒前
刘霆勋发布了新的文献求助10
10秒前
哪位完成签到,获得积分10
10秒前
风吹麦田应助fish采纳,获得100
11秒前
fnuew发布了新的文献求助10
11秒前
JIANGSHUI发布了新的文献求助10
12秒前
林深完成签到,获得积分10
12秒前
风清扬发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
山雷发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802