Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 哲学 语言学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:35
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐88完成签到,获得积分10
刚刚
脆脆鲨完成签到 ,获得积分10
刚刚
小十七果完成签到,获得积分10
1秒前
1秒前
爱吃肉肉的手性分子完成签到,获得积分10
1秒前
1秒前
xue完成签到 ,获得积分10
1秒前
昨夜雨疏风骤完成签到,获得积分10
1秒前
1秒前
FashionBoy应助不散的和弦采纳,获得10
2秒前
2秒前
2秒前
xrf完成签到,获得积分10
2秒前
新新完成签到,获得积分10
3秒前
nn关闭了nn文献求助
3秒前
yamoon完成签到,获得积分10
3秒前
4秒前
4秒前
害怕的帽子完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
hdn完成签到,获得积分10
5秒前
曾无忧发布了新的文献求助10
5秒前
举个栗子8完成签到,获得积分10
5秒前
666y完成签到,获得积分10
5秒前
6秒前
大香蕉发布了新的文献求助10
6秒前
尊敬凝荷完成签到,获得积分10
6秒前
einspringen发布了新的文献求助10
6秒前
youknowdcf发布了新的文献求助10
7秒前
小蜻蜓完成签到,获得积分10
7秒前
粗心的忆山完成签到 ,获得积分10
7秒前
00发布了新的文献求助10
7秒前
薯条派完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
常裤子完成签到,获得积分10
8秒前
神勇友灵完成签到,获得积分0
8秒前
Zhijiuz完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959