Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 哲学 语言学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:35
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助求大佬采纳,获得10
刚刚
stand关注了科研通微信公众号
刚刚
刚刚
Rubia完成签到,获得积分10
刚刚
刚刚
zu完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
开心米粉发布了新的文献求助30
2秒前
2秒前
充电宝应助Yiang采纳,获得30
2秒前
哭泣藏花发布了新的文献求助10
2秒前
2秒前
zzz完成签到,获得积分10
2秒前
zss发布了新的文献求助10
3秒前
3秒前
4秒前
guozi发布了新的文献求助10
4秒前
4秒前
王雯雯完成签到,获得积分10
4秒前
wyw完成签到,获得积分10
5秒前
5秒前
李爱国应助纪忆寒采纳,获得20
5秒前
yang发布了新的文献求助10
5秒前
斧王发布了新的文献求助80
5秒前
可爱的函函应助kkk采纳,获得10
6秒前
Zzoey关注了科研通微信公众号
6秒前
qxqy6678发布了新的文献求助10
6秒前
6秒前
Owen应助Cgy采纳,获得10
6秒前
6秒前
悦耳怜珊发布了新的文献求助10
7秒前
香蕉静芙发布了新的文献求助10
7秒前
李喜喜发布了新的文献求助10
7秒前
7秒前
zhonglv7应助制药小兵采纳,获得10
8秒前
wanci应助典雅的绿凝采纳,获得10
8秒前
金鱼发布了新的文献求助20
8秒前
8秒前
CC发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534