已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 哲学 语言学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:22
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助zkeeee采纳,获得10
1秒前
今后应助ShellyHan采纳,获得10
4秒前
斯文败类应助高天雨采纳,获得10
5秒前
5秒前
满意的开山完成签到,获得积分10
6秒前
7秒前
7秒前
粗暴的无色完成签到 ,获得积分10
7秒前
三三发布了新的文献求助10
9秒前
cc完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
轻松旭尧发布了新的文献求助10
12秒前
王磊完成签到 ,获得积分10
12秒前
高天雨发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
andrele发布了新的文献求助10
19秒前
19秒前
ShellyHan发布了新的文献求助10
19秒前
Ail完成签到,获得积分10
20秒前
Minna完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
24秒前
24秒前
开朗依琴完成签到,获得积分10
25秒前
25秒前
尤萨发布了新的文献求助10
28秒前
28秒前
31秒前
科研通AI5应助JQB采纳,获得10
32秒前
尤萨完成签到,获得积分10
32秒前
33秒前
33秒前
yuzhou完成签到 ,获得积分10
33秒前
zhujun完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555408
求助须知:如何正确求助?哪些是违规求助? 3131038
关于积分的说明 9389777
捐赠科研通 2830505
什么是DOI,文献DOI怎么找? 1556071
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750