Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

分割 人工智能 小波 计算机科学 模式识别(心理学) 联营 特征(语言学) 语言学 哲学
作者
S. Akila Agnes,A.A. Solomon,K. Karthick
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105509-105509 被引量:35
标识
DOI:10.1016/j.bspc.2023.105509
摘要

Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high- and low-frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several state-of-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
搜集达人应助老老熊采纳,获得10
3秒前
大大小完成签到,获得积分10
4秒前
三生有幸完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
大大小发布了新的文献求助10
8秒前
会幸福的发布了新的文献求助10
8秒前
今后应助风清扬采纳,获得10
12秒前
打打应助风清扬采纳,获得10
12秒前
12秒前
sc发布了新的文献求助10
12秒前
12秒前
14秒前
wyg1994发布了新的文献求助10
16秒前
17秒前
17秒前
领导范儿应助形随将至采纳,获得10
18秒前
19秒前
水心完成签到 ,获得积分10
20秒前
21秒前
许思真完成签到,获得积分10
21秒前
谦谦神棍发布了新的文献求助10
23秒前
药学小团子完成签到 ,获得积分10
24秒前
leehong发布了新的文献求助10
24秒前
asdlxz发布了新的文献求助10
25秒前
Joshua完成签到,获得积分0
26秒前
土土完成签到,获得积分10
26秒前
by完成签到,获得积分10
26秒前
鲤角兽发布了新的文献求助10
27秒前
wanci应助hope采纳,获得10
28秒前
29秒前
30秒前
形随将至发布了新的文献求助10
35秒前
善学以致用应助wdy337采纳,获得10
37秒前
zzz完成签到 ,获得积分10
37秒前
完美世界应助鲤角兽采纳,获得10
39秒前
leehong完成签到,获得积分20
39秒前
直率的宛海完成签到,获得积分10
40秒前
asdlxz完成签到,获得积分20
40秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457592
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292461
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458659
邀请新用户注册赠送积分活动 1448644
关于科研通互助平台的介绍 1424323