反推
控制理论(社会学)
非线性系统
有界函数
控制器(灌溉)
跟踪误差
理论(学习稳定性)
自适应控制
计算机科学
转化(遗传学)
跟踪(教育)
采样(信号处理)
数学
功能(生物学)
方案(数学)
控制(管理)
人工智能
量子力学
农学
心理学
教育学
化学
计算机视觉
生物化学
生物
数学分析
物理
机器学习
进化生物学
滤波器(信号处理)
基因
作者
Simin Liu,Shuqian Zhu,Yu‐Qun Han
标识
DOI:10.1080/00207179.2023.2241921
摘要
In this paper, the problem of sampled-data adaptive tracking control for a class of switched nonlinear systems with prescribed performance is considered. In order to guarantee the system is stable and achieves the prescribed performance in sampled-data control, a coordinate transformation satisfying the prescribed performance is introduced. In addition, the neural networks (NNs) used to approximate the unknown nonlinear functions and the backstepping technique are applied to design the sampled-data controller and the adaptive laws. An upper bound on the sampling period is obtained to maintain the stability of the systems. It is confirmed that the designed sampled-data scheme ensures that all signals of the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error is limited to the prescribed performance function. The effectiveness of the designed control scheme is demonstrated by two simulation examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI