亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Memristor-Based CNNs for Detecting Stress Using Brain Imaging Signals

神经影像学 人工智能 压力(语言学) 神经科学 计算机科学 模式识别(心理学) 心理学 哲学 语言学
作者
SuJin Bak,Jinwoo Park,Jaehoon Lee,Jichai Jeong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 140-149 被引量:4
标识
DOI:10.1109/tetci.2023.3297841
摘要

Typical convolutional neural networks (CNNs) are widely used to recognize a user's stress state using the functional near-infrared spectroscopy (fNIRS), which is the latest brain imaging technology. fNIRS signals are usually fed into CNN models in the form of high-dimensional image data. However, this approach is not easy to achieve high classification accuracy because of physiological noises in brain signals. It is also likely to overlook the process of evaluating the reliability of calculated classification accuracy. To solve these problems, we proposed a memristor-based CNN (M-CNNs) This model's weight update process involves using stochastic gradient descent with momentum (SGDM), where the normalized conductances of memristors are used as weight substitutes. These conductances are then adjusted to classify stress states. We calculated the classification accuracies between the control and stress groups by using the M-CNNs, and then compared them with those of the CNNs. We used DenseNet, the most recent CNN model, to simulate accuracy under the same conditions. To ensure a fair comparison, we divided the DenseNet into the memristor-based DenseNet (M-DenseNet) and the conventional DenseNet (C-DenseNet). As a result, we discovered that the accuracy of M-CNNs (93.33%) exceeded that of CNNs (87.50%), and is reliable by precision, recall, and F-Score calculated from a confusion matrix. Likewise, M-DenseNet (92.38%) has higher accuracy than C-DenseNet (90.00%), but shows lower accuracy than M-CNNs. Moreover, we observed the reproducibility of M-CNN/DenseNet in various datasets. Therefore, our study suggests a promising application of CNN by combining conductances of memristor for classifying stress states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的友容完成签到 ,获得积分10
26秒前
30秒前
32秒前
37秒前
斯文败类应助清风拂山岗采纳,获得10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
外向易形完成签到,获得积分10
2分钟前
清风拂山岗完成签到,获得积分10
2分钟前
amengptsd完成签到,获得积分10
2分钟前
科研通AI5应助TheaGao采纳,获得10
2分钟前
严珍珍完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
yu应助科研通管家采纳,获得150
3分钟前
3分钟前
TheaGao发布了新的文献求助10
4分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
Owen应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
yu应助科研通管家采纳,获得50
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228138
关于积分的说明 9778550
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609975
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991