Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 排名(信息检索) 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Yang Shen,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13904-13920 被引量:17
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木也呢发布了新的文献求助10
刚刚
代码发布了新的文献求助10
1秒前
林北bei发布了新的文献求助10
1秒前
腹黑同学发布了新的文献求助10
1秒前
2秒前
溫蒂应助yu采纳,获得30
2秒前
包容聋五完成签到,获得积分10
2秒前
科研通AI6应助敖江风云采纳,获得10
2秒前
Murphy发布了新的文献求助10
2秒前
Vicky发布了新的文献求助10
3秒前
皮卡pika发布了新的文献求助50
3秒前
3秒前
4秒前
平常映雁完成签到,获得积分10
4秒前
天天快乐应助DS采纳,获得10
4秒前
酷波er应助Gray采纳,获得10
4秒前
猪米妮发布了新的文献求助10
5秒前
叶一一完成签到,获得积分20
5秒前
Hu完成签到,获得积分10
5秒前
6秒前
老福贵儿应助可爱丹烟采纳,获得10
6秒前
冷酷妙菡发布了新的文献求助10
6秒前
珊明治发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
hahehahahei完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
王楷楷发布了新的文献求助10
10秒前
可爱丹烟完成签到,获得积分10
10秒前
协和_子鱼完成签到,获得积分0
10秒前
12秒前
RYAN发布了新的文献求助10
12秒前
GGbond完成签到,获得积分10
12秒前
情怀应助珍珍采纳,获得10
13秒前
13秒前
橘子汽水和蛋糕完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458