亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 排名(信息检索) 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Yang Shen,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13904-13920 被引量:17
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
20秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
小唐完成签到,获得积分10
25秒前
1分钟前
1分钟前
1分钟前
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
loitinsuen完成签到,获得积分10
1分钟前
1分钟前
在水一方应助me采纳,获得10
2分钟前
2分钟前
2分钟前
默默的板栗完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
外向的妍完成签到,获得积分10
2分钟前
走啊走应助绝世高手采纳,获得30
2分钟前
雪白的听寒完成签到 ,获得积分10
2分钟前
慕青应助简单的凡儿采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
曦耀发布了新的文献求助20
4分钟前
黄嘉慧完成签到 ,获得积分10
4分钟前
MGraceLi_sci完成签到,获得积分10
4分钟前
所所应助zhanghua采纳,获得10
4分钟前
5分钟前
兆兆完成签到 ,获得积分10
5分钟前
zhanghua发布了新的文献求助10
5分钟前
5分钟前
小马甲应助dddhhhqqq采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924