亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Sen Yang,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13904-13920
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋圆关注了科研通微信公众号
26秒前
42秒前
芋圆发布了新的文献求助10
47秒前
烟消云散完成签到,获得积分10
52秒前
科目三应助布通采纳,获得10
1分钟前
陈无敌完成签到 ,获得积分10
1分钟前
neal仰望完成签到,获得积分10
2分钟前
半岛岛发布了新的文献求助10
2分钟前
neal仰望发布了新的文献求助10
3分钟前
orixero应助简单的奇迹采纳,获得10
3分钟前
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
子月之路发布了新的文献求助10
4分钟前
机智明辉完成签到,获得积分10
5分钟前
幽默雨应助慢慢的地理人采纳,获得10
5分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
5分钟前
穆紫应助慢慢的地理人采纳,获得10
5分钟前
爆米花应助哭泣秋蝶采纳,获得10
7分钟前
7分钟前
7分钟前
LULU发布了新的文献求助30
7分钟前
哭泣秋蝶发布了新的文献求助10
7分钟前
hugeyoung发布了新的文献求助20
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
LIHONG1994发布了新的文献求助10
9分钟前
Jasper应助LULU采纳,获得10
9分钟前
小灰灰完成签到 ,获得积分10
9分钟前
9分钟前
Ffegrbgbsssgr发布了新的文献求助10
10分钟前
调皮芫完成签到,获得积分10
10分钟前
深情安青应助LIHONG1994采纳,获得10
10分钟前
Ffegrbgbsssgr完成签到,获得积分20
10分钟前
淡淡醉波wuliao完成签到 ,获得积分10
11分钟前
田様应助阿明采纳,获得10
11分钟前
慢慢的地理人完成签到,获得积分10
11分钟前
wxy完成签到 ,获得积分10
11分钟前
Hello应助外向板栗采纳,获得10
11分钟前
11分钟前
酚酞v发布了新的文献求助10
11分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126107
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729751
捐赠科研通 2431767
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622624
版权声明 600392