Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Sen Yang,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13904-13920
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily完成签到,获得积分10
刚刚
华仔应助12345采纳,获得10
2秒前
GuangChe应助舒适的藏花采纳,获得10
2秒前
yhyhyh发布了新的文献求助10
2秒前
3秒前
唐糖完成签到,获得积分10
3秒前
llllp给llllp的求助进行了留言
3秒前
Orange应助孙绪鹏采纳,获得10
4秒前
YuF完成签到,获得积分10
4秒前
等于几都行完成签到 ,获得积分10
4秒前
4秒前
所所应助hayden采纳,获得30
4秒前
动听的菀发布了新的文献求助30
5秒前
苹果颖发布了新的文献求助10
5秒前
5秒前
科研乞丐关注了科研通微信公众号
7秒前
風声鶴唳发布了新的文献求助10
8秒前
唐落音完成签到,获得积分10
8秒前
追寻冰淇淋应助yang123采纳,获得30
8秒前
瑞瑞完成签到 ,获得积分20
8秒前
大猫不吃鱼完成签到,获得积分10
9秒前
南山无梅落完成签到,获得积分10
9秒前
宁羽发布了新的文献求助20
10秒前
江岸与城完成签到 ,获得积分10
10秒前
超级无心完成签到,获得积分10
10秒前
wanna发布了新的文献求助10
11秒前
Yanzy完成签到,获得积分10
11秒前
12秒前
mingpu完成签到,获得积分10
12秒前
满意花生完成签到,获得积分10
12秒前
lalala完成签到 ,获得积分10
12秒前
晓倩完成签到,获得积分10
13秒前
SYLH应助标致的紫翠采纳,获得20
13秒前
yhyhyh完成签到,获得积分20
13秒前
做实验的猹完成签到,获得积分10
13秒前
小二郎应助儒雅的秋珊采纳,获得10
15秒前
超级的三问完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771