Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 排名(信息检索) 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Yang Shen,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13904-13920 被引量:17
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助inno采纳,获得10
3秒前
CipherSage应助yizhi采纳,获得10
3秒前
5秒前
李健的小迷弟应助Jonathan采纳,获得10
7秒前
周文瑶完成签到,获得积分10
8秒前
ZZZ完成签到,获得积分10
8秒前
科研通AI6应助逸逸采纳,获得10
10秒前
yizhi完成签到,获得积分20
12秒前
13秒前
13秒前
能干的勒发布了新的文献求助10
13秒前
丘比特应助忧心的静蕾采纳,获得10
14秒前
16秒前
PHW完成签到,获得积分10
17秒前
光亮友安完成签到,获得积分10
17秒前
hilm应助淮安石河子采纳,获得10
18秒前
huhu完成签到 ,获得积分10
18秒前
19秒前
常常完成签到,获得积分10
19秒前
luisa完成签到,获得积分10
21秒前
长风完成签到,获得积分10
22秒前
彪壮的茗完成签到,获得积分10
22秒前
Owen应助Xinger采纳,获得10
22秒前
L91完成签到,获得积分10
22秒前
小女子常戚戚完成签到,获得积分10
23秒前
naturehome发布了新的文献求助10
23秒前
23秒前
26秒前
apple红了完成签到 ,获得积分10
27秒前
27秒前
kento发布了新的文献求助30
28秒前
打死小胖纸完成签到,获得积分10
29秒前
31秒前
31秒前
CodeCraft应助HCl采纳,获得10
31秒前
正直画笔完成签到 ,获得积分10
32秒前
小二郎应助落后的问丝采纳,获得10
32秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
36秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563896
关于积分的说明 14292012
捐赠科研通 4488579
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448615
关于科研通互助平台的介绍 1424244