Attribute-Aware Deep Hashing With Self-Consistency for Large-Scale Fine-Grained Image Retrieval

计算机科学 散列函数 图像检索 一致性(知识库) 人工智能 排名(信息检索) 模式识别(心理学) 数据挖掘 机器学习 图像(数学) 计算机安全
作者
Xiu-Shen Wei,Yang Shen,Xuhao Sun,Peng Wang,Yuxin Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13904-13920 被引量:17
标识
DOI:10.1109/tpami.2023.3299563
摘要

Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. Our models are also equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities. Then, driven by preserving original entities' similarity, the required hash codes can be generated from these attribute-specific vectors and thus become attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we consider the model design from the perspective of the self-consistency principle and propose to further enhance models' self-consistency by equipping an additional image reconstruction path. Comprehensive quantitative experiments under diverse empirical settings on six fine-grained retrieval datasets and two generic retrieval datasets show the superiority of our models over competing methods. Moreover, qualitative results demonstrate that not only the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects, but also our self-consistency designs can effectively overcome simplicity bias in fine-grained hashing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
1秒前
TANG完成签到,获得积分10
1秒前
13223456发布了新的文献求助10
1秒前
kdf发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
852应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得50
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
GPTea应助科研通管家采纳,获得150
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
加菲丰丰应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
sxkoala应助科研通管家采纳,获得30
4秒前
加菲丰丰应助科研通管家采纳,获得30
4秒前
文艺紫菜应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
我的miemie应助科研通管家采纳,获得20
4秒前
liwanyi0808完成签到,获得积分10
6秒前
大个应助TheFuture采纳,获得10
6秒前
7秒前
sy完成签到,获得积分10
8秒前
013完成签到,获得积分10
8秒前
可爱的函函应助Ahan采纳,获得10
8秒前
叫我学弟发布了新的文献求助10
9秒前
pancake应助王治清采纳,获得30
9秒前
善学以致用应助南巷采纳,获得10
12秒前
12秒前
轻松奄发布了新的文献求助10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045