已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Crack identification of Yunnan walnuts based on acoustic vibration and feature fusion

特征选择 支持向量机 模式识别(心理学) 计算机科学 粒子群优化 特征(语言学) 人工智能 特征向量 机器学习 语言学 哲学
作者
Hao Zhang,Lixia Li,Liquan Tian,Fujie Zhang,Lei Shi,Wei Wu,Zicheng Zhan
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (11)
标识
DOI:10.1111/jfpe.14422
摘要

Abstract Cracks in walnuts during processing and storage can adversely affect their quality and cause economic losses. To achieve efficient identification of cracked walnuts, this study proposed a method of walnut crack identification based on acoustic vibration and feature fusion. First, the sound signals of intact and cracked walnuts were collected using an acoustic signal acquisition system, and 44 time‐domain features, 13 frequency‐domain features, and 768 Mel spectrogram features (the number of pixel frequencies corresponding to the gray‐scale values of R, G, and B channels) of the sound signals were extracted. Then, the classification models of support vector machines (SVM), least squares support vector machines (LSSVM), and extreme learning machines (ELM) were established based on single class features data and fusion of different feature groups data respectively. The results indicated that the LSSVM model with the fusion of the three feature sets was optimal, with an accuracy of 85% in the testing set. Next, three feature selection methods were employed to reduce the dimensionality of the best fused feature data. Subsequently, the LSSVM classification model was established based on the feature selection data. Finally, arithmetic optimization algorithm (AOA), particle swarm optimization (PSO), and gray wolf optimization (GWO) were introduced to optimize the parameters c and of the classification model. The results indicated that the best classification model was VISSA‐IRIV‐GWO‐LSSVM, with 95% accuracy in the testing set. This study provides theoretical support for the research and development of online detection equipment for walnut crack in Yunnan Yangbi. Practical applications Cracks in walnut during harvesting, transportation and peeling may lead to economic losses and food safety problems. Aiming at the difficulty and low accuracy of crack identification in Yunnan walnut, this paper proposed a method for crack detection based on acoustic vibration identification combine with feature fusion. The features of time domain, frequency domain and Mel spectrogram were extracted from the effective sound signal, and the features were fused. The influence of three feature selection methods, three models and three optimization algorithms on walnut sound signal recognition was analyzed and compared. The results indicated that the best classification model was VISSA‐IRIV‐GWO‐LSSVM, and the method proposed in this study provides theoretical support for the research and development of online detection equipment for walnut crack in Yunnan Yangbi.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香芋完成签到 ,获得积分10
1秒前
xx发布了新的文献求助10
1秒前
fendy完成签到,获得积分0
2秒前
筱xiao完成签到 ,获得积分10
2秒前
爆米花应助南桥采纳,获得10
3秒前
852应助我无语采纳,获得10
4秒前
唠叨的富应助坦率迎海zzh采纳,获得10
4秒前
HC3完成签到 ,获得积分10
4秒前
嘉丽的后花园完成签到,获得积分10
5秒前
SKRP发布了新的文献求助10
5秒前
10秒前
shanshan发布了新的文献求助10
12秒前
Persist6578完成签到 ,获得积分10
15秒前
田様应助西沃恩采纳,获得10
15秒前
SciGPT应助徐凤年采纳,获得10
19秒前
19秒前
隐形曼青应助YHT采纳,获得10
19秒前
19秒前
RockRedfoo完成签到 ,获得积分10
20秒前
22秒前
久等雨归发布了新的文献求助10
22秒前
我无语发布了新的文献求助10
23秒前
quasar完成签到,获得积分10
24秒前
25秒前
西沃恩发布了新的文献求助10
27秒前
Hyy完成签到 ,获得积分10
28秒前
wab完成签到,获得积分0
29秒前
科研通AI6.2应助zxh采纳,获得10
32秒前
34秒前
wayne完成签到 ,获得积分10
34秒前
Persist完成签到 ,获得积分10
35秒前
37秒前
粥粥完成签到,获得积分0
39秒前
呵呵完成签到 ,获得积分10
40秒前
朱琳发布了新的文献求助10
41秒前
义气的代曼完成签到,获得积分10
42秒前
小二郎应助久等雨归采纳,获得10
42秒前
42秒前
内向苡完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875186
求助须知:如何正确求助?哪些是违规求助? 6514243
关于积分的说明 15676202
捐赠科研通 4993027
什么是DOI,文献DOI怎么找? 2691335
邀请新用户注册赠送积分活动 1633635
关于科研通互助平台的介绍 1591298