Crack identification of Yunnan walnuts based on acoustic vibration and feature fusion

特征选择 支持向量机 模式识别(心理学) 计算机科学 粒子群优化 特征(语言学) 人工智能 特征向量 机器学习 语言学 哲学
作者
Hao Zhang,Lixia Li,Liquan Tian,Fujie Zhang,Lei Shi,Wei Wu,Zicheng Zhan
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (11)
标识
DOI:10.1111/jfpe.14422
摘要

Abstract Cracks in walnuts during processing and storage can adversely affect their quality and cause economic losses. To achieve efficient identification of cracked walnuts, this study proposed a method of walnut crack identification based on acoustic vibration and feature fusion. First, the sound signals of intact and cracked walnuts were collected using an acoustic signal acquisition system, and 44 time‐domain features, 13 frequency‐domain features, and 768 Mel spectrogram features (the number of pixel frequencies corresponding to the gray‐scale values of R, G, and B channels) of the sound signals were extracted. Then, the classification models of support vector machines (SVM), least squares support vector machines (LSSVM), and extreme learning machines (ELM) were established based on single class features data and fusion of different feature groups data respectively. The results indicated that the LSSVM model with the fusion of the three feature sets was optimal, with an accuracy of 85% in the testing set. Next, three feature selection methods were employed to reduce the dimensionality of the best fused feature data. Subsequently, the LSSVM classification model was established based on the feature selection data. Finally, arithmetic optimization algorithm (AOA), particle swarm optimization (PSO), and gray wolf optimization (GWO) were introduced to optimize the parameters c and of the classification model. The results indicated that the best classification model was VISSA‐IRIV‐GWO‐LSSVM, with 95% accuracy in the testing set. This study provides theoretical support for the research and development of online detection equipment for walnut crack in Yunnan Yangbi. Practical applications Cracks in walnut during harvesting, transportation and peeling may lead to economic losses and food safety problems. Aiming at the difficulty and low accuracy of crack identification in Yunnan walnut, this paper proposed a method for crack detection based on acoustic vibration identification combine with feature fusion. The features of time domain, frequency domain and Mel spectrogram were extracted from the effective sound signal, and the features were fused. The influence of three feature selection methods, three models and three optimization algorithms on walnut sound signal recognition was analyzed and compared. The results indicated that the best classification model was VISSA‐IRIV‐GWO‐LSSVM, and the method proposed in this study provides theoretical support for the research and development of online detection equipment for walnut crack in Yunnan Yangbi.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cylair完成签到,获得积分10
1秒前
tiny8417完成签到,获得积分10
3秒前
苏以禾完成签到 ,获得积分10
3秒前
又又完成签到 ,获得积分10
4秒前
5秒前
mickiller完成签到,获得积分10
6秒前
drtianyunhong完成签到,获得积分10
6秒前
我爱科研完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
韩明轩完成签到 ,获得积分10
7秒前
7秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
9秒前
zl完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
等待的代容完成签到,获得积分10
12秒前
Sunny完成签到 ,获得积分10
13秒前
酸菜鱼火锅发布了新的文献求助150
15秒前
廉泽完成签到,获得积分10
16秒前
灵巧夏彤完成签到 ,获得积分10
16秒前
奋斗雅香完成签到 ,获得积分10
17秒前
无脚鸟完成签到,获得积分10
19秒前
快乐的故事完成签到,获得积分10
19秒前
丰富的白开水完成签到,获得积分10
20秒前
曹博完成签到,获得积分10
21秒前
21秒前
那时年少完成签到,获得积分10
22秒前
yurunxintian发布了新的文献求助30
22秒前
Jerry完成签到,获得积分10
22秒前
虚幻绿兰完成签到,获得积分10
23秒前
23秒前
锦慜完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
懵懂的钢笔完成签到 ,获得积分10
26秒前
回来完成签到,获得积分10
27秒前
shtatbf应助科研通管家采纳,获得10
28秒前
酸菜鱼火锅完成签到,获得积分10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
shtatbf应助科研通管家采纳,获得10
28秒前
chiazy完成签到,获得积分10
28秒前
安安应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858