Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a clinical prediction model

毛细支气管炎 医学 逻辑回归 儿科 心理干预 人口 呼吸系统 内科学 环境卫生 精神科
作者
Pekka Vartiainen,Sakari Jukarainen,Samuel Rhedin,Alexandra Prinz,Tuomo Hartonen,Andrius Vabalas,Essi Viippola,Rodosthenis S. Rodosthenous,Sara Koskelainen,Aoxing Liu,Cecilia Lundholm,Awad I. Smew,Emma Caffrey Osvald,Emmi Helle,Markus Perola,Catarina Almqvist,Santtu Heinonen,Andrea Ganna
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (11): e821-e830 被引量:19
标识
DOI:10.1016/s2589-7500(23)00175-9
摘要

Novel immunisation methods against respiratory syncytial virus (RSV) are emerging, but knowledge of risk factors for severe RSV disease is insufficient for optimal targeting of interventions against them. Our aims were to identify predictors for RSV hospital admission from registry-based data and to develop and validate a clinical prediction model to guide RSV immunoprophylaxis for infants younger than 1 year.In this model development and validation study, we studied all infants born in Finland between June 1, 1997, and May 31, 2020, and in Sweden between June 1, 2006, and May 31, 2020, along with the data for their parents and siblings. Infants were excluded if they died or were admitted to hospital for RSV within the first 7 days of life. The outcome was hospital admission due to RSV bronchiolitis during the first year of life. The Finnish study population was divided into a development dataset (born between June 1, 1997, and May 31, 2017) and a temporal hold-out validation dataset (born between June 1, 2017, and May 31, 2020). The development dataset was used for predictor discovery and selection in which we screened 1511 candidate predictors from the infants', parents', and siblings' data, and developed a logistic regression model with the 16 most important predictors. This model was then validated using the Finnish hold-out validation dataset and the Swedish dataset.In total, there were 1 124 561 infants in the Finnish development dataset, 130 352 infants in the Finnish hold-out validation dataset, and 1 459 472 infants in the Swedish dataset. In addition to known predictors such as severe congenital heart defects (adjusted odds ratio 2·89, 95% CI 2·28-3·65), we confirmed some less established predictors for RSV hospital admission, most notably oesophageal malformations (3·11, 1·86-5·19) and lower complexity congenital heart defects (1·43, 1·25-1·63). The prediction model's C-statistic was 0·766 (95% CI 0·742-0·789) in Finnish data and 0·737 (0·710-0·762) in Swedish validation data. The infants in the highest decile of predicted RSV hospital admission probability had 4·5 times higher observed risk compared with others. Calibration varied according to epidemic intensity. The model's performance was similar to a machine learning (XGboost) model using all 1511 candidate predictors (C-statistic in Finland 0·771, 95% CI 0·754-0·788). The prediction model showed clinical utility in decision curve analysis and in hypothetical number needed to treat calculations for immunisation, and its C-statistic was similar across different strata of parental income.The identified predictors and the prediction model can be used in guiding RSV immunoprophylaxis in infants, or as a basis for further immunoprophylaxis targeting tools.Sigrid Jusélius Foundation, European Research Council, Pediatric Research Foundation, and Academy of Finland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Struggle完成签到 ,获得积分10
1秒前
1秒前
秦兴虎完成签到,获得积分10
2秒前
Drew11完成签到,获得积分10
2秒前
风趣青槐完成签到,获得积分10
4秒前
科隆龙完成签到,获得积分10
5秒前
5秒前
饱满一手完成签到 ,获得积分10
5秒前
99完成签到,获得积分10
7秒前
枕星发布了新的文献求助10
7秒前
drlq2022完成签到,获得积分10
8秒前
王山完成签到,获得积分10
9秒前
自觉寒梦完成签到,获得积分10
10秒前
ding应助缥缈一刀采纳,获得10
10秒前
pakiorder发布了新的文献求助10
10秒前
专心搞学术完成签到,获得积分10
10秒前
bkagyin应助zzcherished采纳,获得10
12秒前
你怎么这么可爱啊完成签到,获得积分10
12秒前
13秒前
研友_Lmg1gZ完成签到,获得积分10
13秒前
Crazyer完成签到,获得积分10
13秒前
Shuey完成签到,获得积分10
14秒前
XXXXH完成签到,获得积分10
14秒前
Z可完成签到 ,获得积分10
15秒前
momo123完成签到 ,获得积分10
15秒前
高兴的书竹完成签到 ,获得积分10
16秒前
mp5完成签到,获得积分10
17秒前
薯条一克完成签到 ,获得积分10
17秒前
zzcherished完成签到,获得积分10
18秒前
阿军完成签到,获得积分10
18秒前
糊涂的皮皮虾完成签到 ,获得积分10
19秒前
big ben完成签到 ,获得积分10
19秒前
可以的完成签到,获得积分10
20秒前
小瓶盖完成签到 ,获得积分10
20秒前
22秒前
辛勤的泽洋完成签到 ,获得积分10
24秒前
YXHTCM完成签到,获得积分10
26秒前
陈艺鹏完成签到,获得积分10
28秒前
nuistd完成签到,获得积分10
28秒前
大陆完成签到,获得积分0
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029