清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a clinical prediction model

毛细支气管炎 医学 逻辑回归 儿科 心理干预 人口 呼吸系统 内科学 环境卫生 精神科
作者
Pekka Vartiainen,Sakari Jukarainen,Samuel Rhedin,Alexandra Prinz,Tuomo Hartonen,Andrius Vabalas,Essi Viippola,Rodosthenis S. Rodosthenous,Sara Koskelainen,Aoxing Liu,Cecilia Lundholm,Awad I. Smew,Emma Caffrey Osvald,Emmi Helle,Markus Perola,Catarina Almqvist,Santtu Heinonen,Andrea Ganna
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (11): e821-e830 被引量:11
标识
DOI:10.1016/s2589-7500(23)00175-9
摘要

Novel immunisation methods against respiratory syncytial virus (RSV) are emerging, but knowledge of risk factors for severe RSV disease is insufficient for optimal targeting of interventions against them. Our aims were to identify predictors for RSV hospital admission from registry-based data and to develop and validate a clinical prediction model to guide RSV immunoprophylaxis for infants younger than 1 year.In this model development and validation study, we studied all infants born in Finland between June 1, 1997, and May 31, 2020, and in Sweden between June 1, 2006, and May 31, 2020, along with the data for their parents and siblings. Infants were excluded if they died or were admitted to hospital for RSV within the first 7 days of life. The outcome was hospital admission due to RSV bronchiolitis during the first year of life. The Finnish study population was divided into a development dataset (born between June 1, 1997, and May 31, 2017) and a temporal hold-out validation dataset (born between June 1, 2017, and May 31, 2020). The development dataset was used for predictor discovery and selection in which we screened 1511 candidate predictors from the infants', parents', and siblings' data, and developed a logistic regression model with the 16 most important predictors. This model was then validated using the Finnish hold-out validation dataset and the Swedish dataset.In total, there were 1 124 561 infants in the Finnish development dataset, 130 352 infants in the Finnish hold-out validation dataset, and 1 459 472 infants in the Swedish dataset. In addition to known predictors such as severe congenital heart defects (adjusted odds ratio 2·89, 95% CI 2·28-3·65), we confirmed some less established predictors for RSV hospital admission, most notably oesophageal malformations (3·11, 1·86-5·19) and lower complexity congenital heart defects (1·43, 1·25-1·63). The prediction model's C-statistic was 0·766 (95% CI 0·742-0·789) in Finnish data and 0·737 (0·710-0·762) in Swedish validation data. The infants in the highest decile of predicted RSV hospital admission probability had 4·5 times higher observed risk compared with others. Calibration varied according to epidemic intensity. The model's performance was similar to a machine learning (XGboost) model using all 1511 candidate predictors (C-statistic in Finland 0·771, 95% CI 0·754-0·788). The prediction model showed clinical utility in decision curve analysis and in hypothetical number needed to treat calculations for immunisation, and its C-statistic was similar across different strata of parental income.The identified predictors and the prediction model can be used in guiding RSV immunoprophylaxis in infants, or as a basis for further immunoprophylaxis targeting tools.Sigrid Jusélius Foundation, European Research Council, Pediatric Research Foundation, and Academy of Finland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿鑫发布了新的文献求助10
24秒前
白嫖论文完成签到 ,获得积分10
45秒前
maggiexjl完成签到,获得积分10
56秒前
和谐的夏岚完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
Cole完成签到,获得积分10
1分钟前
CodeCraft应助Cole采纳,获得10
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
2分钟前
Cole发布了新的文献求助10
2分钟前
小哈完成签到 ,获得积分10
2分钟前
英勇无春发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
牛牛牛刘完成签到 ,获得积分10
3分钟前
英勇无春完成签到,获得积分10
3分钟前
清秀的怀蕊完成签到 ,获得积分10
4分钟前
4分钟前
wsb76完成签到 ,获得积分10
5分钟前
午后狂睡完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
zhangbh1990完成签到 ,获得积分10
6分钟前
Terahertz完成签到 ,获得积分10
6分钟前
6分钟前
没时间解释了完成签到 ,获得积分10
6分钟前
万万发布了新的文献求助10
6分钟前
6分钟前
飞翔的荷兰人完成签到,获得积分10
6分钟前
万万完成签到,获得积分10
7分钟前
俊逸吐司完成签到 ,获得积分10
7分钟前
7分钟前
小袁搜题发布了新的文献求助10
7分钟前
田様应助JueruiWang1258采纳,获得10
7分钟前
7分钟前
7分钟前
无悔完成签到 ,获得积分10
7分钟前
1437594843完成签到 ,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500090
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477