Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a clinical prediction model

毛细支气管炎 医学 逻辑回归 儿科 心理干预 人口 呼吸系统 内科学 环境卫生 精神科
作者
Pekka Vartiainen,Sakari Jukarainen,Samuel Rhedin,Alexandra Prinz,Tuomo Hartonen,Andrius Vabalas,Essi Viippola,Rodosthenis S. Rodosthenous,Sara Koskelainen,Aoxing Liu,Cecilia Lundholm,Awad I. Smew,Emma Caffrey Osvald,Emmi Helle,Markus Perola,Catarina Almqvist,Santtu Heinonen,Andrea Ganna
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (11): e821-e830 被引量:19
标识
DOI:10.1016/s2589-7500(23)00175-9
摘要

Novel immunisation methods against respiratory syncytial virus (RSV) are emerging, but knowledge of risk factors for severe RSV disease is insufficient for optimal targeting of interventions against them. Our aims were to identify predictors for RSV hospital admission from registry-based data and to develop and validate a clinical prediction model to guide RSV immunoprophylaxis for infants younger than 1 year.In this model development and validation study, we studied all infants born in Finland between June 1, 1997, and May 31, 2020, and in Sweden between June 1, 2006, and May 31, 2020, along with the data for their parents and siblings. Infants were excluded if they died or were admitted to hospital for RSV within the first 7 days of life. The outcome was hospital admission due to RSV bronchiolitis during the first year of life. The Finnish study population was divided into a development dataset (born between June 1, 1997, and May 31, 2017) and a temporal hold-out validation dataset (born between June 1, 2017, and May 31, 2020). The development dataset was used for predictor discovery and selection in which we screened 1511 candidate predictors from the infants', parents', and siblings' data, and developed a logistic regression model with the 16 most important predictors. This model was then validated using the Finnish hold-out validation dataset and the Swedish dataset.In total, there were 1 124 561 infants in the Finnish development dataset, 130 352 infants in the Finnish hold-out validation dataset, and 1 459 472 infants in the Swedish dataset. In addition to known predictors such as severe congenital heart defects (adjusted odds ratio 2·89, 95% CI 2·28-3·65), we confirmed some less established predictors for RSV hospital admission, most notably oesophageal malformations (3·11, 1·86-5·19) and lower complexity congenital heart defects (1·43, 1·25-1·63). The prediction model's C-statistic was 0·766 (95% CI 0·742-0·789) in Finnish data and 0·737 (0·710-0·762) in Swedish validation data. The infants in the highest decile of predicted RSV hospital admission probability had 4·5 times higher observed risk compared with others. Calibration varied according to epidemic intensity. The model's performance was similar to a machine learning (XGboost) model using all 1511 candidate predictors (C-statistic in Finland 0·771, 95% CI 0·754-0·788). The prediction model showed clinical utility in decision curve analysis and in hypothetical number needed to treat calculations for immunisation, and its C-statistic was similar across different strata of parental income.The identified predictors and the prediction model can be used in guiding RSV immunoprophylaxis in infants, or as a basis for further immunoprophylaxis targeting tools.Sigrid Jusélius Foundation, European Research Council, Pediatric Research Foundation, and Academy of Finland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助瘦瘦的问安采纳,获得10
刚刚
田様应助开心易真采纳,获得10
刚刚
Bonnienuit完成签到 ,获得积分10
2秒前
秀秀完成签到,获得积分10
3秒前
He完成签到,获得积分10
3秒前
小柠檬发布了新的文献求助10
3秒前
3秒前
zz完成签到,获得积分10
3秒前
可爱的函函应助wangwenzhe采纳,获得10
3秒前
微笑枫叶完成签到,获得积分10
4秒前
SciGPT应助ls采纳,获得10
5秒前
搜集达人应助He采纳,获得10
6秒前
6秒前
gqb发布了新的文献求助10
6秒前
典雅的俊驰应助体贴的嵩采纳,获得30
6秒前
8秒前
小邸发布了新的文献求助10
8秒前
科目三应助付书亚采纳,获得10
8秒前
9秒前
April发布了新的文献求助10
9秒前
jackscu完成签到,获得积分10
9秒前
星辰大海应助完美修杰采纳,获得10
10秒前
yzh1129发布了新的文献求助10
10秒前
顾矜应助小七啊采纳,获得10
10秒前
10秒前
beituo发布了新的文献求助10
12秒前
12秒前
香蕉觅云应助lilx2019采纳,获得10
12秒前
13秒前
14秒前
Owen应助奋斗水香采纳,获得10
14秒前
MAX发布了新的文献求助10
14秒前
XYL发布了新的文献求助10
14秒前
14秒前
Paperduoduo完成签到,获得积分10
15秒前
16秒前
科研通AI6应助lvlv采纳,获得10
17秒前
热情的乘风完成签到,获得积分10
17秒前
Lucy完成签到,获得积分10
17秒前
白色梨花完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131