Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 基因 高分子化学 化学 社会学 生物化学 社会科学
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明人达完成签到,获得积分10
刚刚
Laurie发布了新的文献求助10
刚刚
赘婿应助九局下半采纳,获得10
刚刚
果果给果果的求助进行了留言
刚刚
科研通AI6应助无铭亚空采纳,获得10
刚刚
ccwu发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
刚刚
1秒前
乐乐应助1234采纳,获得10
1秒前
mmz完成签到 ,获得积分10
1秒前
徐老师发布了新的文献求助10
2秒前
美丽完成签到 ,获得积分10
2秒前
CodeCraft应助文艺的夏波采纳,获得10
3秒前
3秒前
3秒前
酷波er应助Deb采纳,获得10
3秒前
3秒前
wenbin完成签到,获得积分10
4秒前
4秒前
毅然决然必然完成签到,获得积分10
4秒前
共享精神应助struggling2026采纳,获得10
4秒前
贤惠的煎蛋完成签到,获得积分10
4秒前
freebird应助zp4采纳,获得10
4秒前
ljy应助奋斗平卉采纳,获得10
5秒前
领导范儿应助奋斗平卉采纳,获得10
5秒前
阿拉艾浩基完成签到,获得积分10
5秒前
channy发布了新的文献求助10
5秒前
完美世界应助喜乐采纳,获得10
6秒前
哈哈哈完成签到,获得积分10
6秒前
lql完成签到 ,获得积分10
6秒前
111完成签到,获得积分10
6秒前
ww发布了新的文献求助10
6秒前
dt完成签到,获得积分10
6秒前
6秒前
7秒前
sunyanghu369发布了新的文献求助10
7秒前
7秒前
何大青完成签到,获得积分10
8秒前
无名应助小王采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271