已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 社会科学 生物化学 化学 社会学 高分子化学 基因
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
贝贝完成签到,获得积分20
5秒前
嘟嘟嘟完成签到,获得积分10
6秒前
传奇3应助慕鳞采纳,获得10
6秒前
ixueyi发布了新的文献求助10
7秒前
勤勤恳恳写论文完成签到 ,获得积分10
7秒前
Lucas应助砍柴少年采纳,获得10
9秒前
1111完成签到 ,获得积分10
10秒前
10秒前
甜橙岛完成签到,获得积分10
11秒前
岸边发布了新的文献求助30
12秒前
14秒前
耳机单蹦发布了新的文献求助30
14秒前
蚊香液完成签到,获得积分10
15秒前
15秒前
16秒前
斯文败类应助mager采纳,获得10
16秒前
慕鳞发布了新的文献求助10
16秒前
17秒前
18秒前
爱听歌的冬寒完成签到,获得积分10
18秒前
sunryaes完成签到 ,获得积分10
19秒前
风趣邴发布了新的文献求助10
19秒前
19秒前
11发布了新的文献求助10
21秒前
catalm完成签到,获得积分20
22秒前
YifanWang应助爱听歌的冬寒采纳,获得10
23秒前
27秒前
科研通AI6应助pililili采纳,获得10
27秒前
28秒前
iNk应助徐志豪采纳,获得10
29秒前
29秒前
无辜的猎豹完成签到 ,获得积分10
30秒前
32秒前
BioGO发布了新的文献求助10
32秒前
可爱的函函应助小星采纳,获得10
35秒前
王小丹完成签到,获得积分10
35秒前
枫威完成签到 ,获得积分10
36秒前
小蘑菇应助精明一寡采纳,获得10
36秒前
zhb关注了科研通微信公众号
36秒前
岂曰无衣完成签到 ,获得积分10
36秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502249
求助须知:如何正确求助?哪些是违规求助? 4598249
关于积分的说明 14463199
捐赠科研通 4531818
什么是DOI,文献DOI怎么找? 2483625
邀请新用户注册赠送积分活动 1466915
关于科研通互助平台的介绍 1439528