Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 社会科学 生物化学 化学 社会学 高分子化学 基因
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Grace完成签到,获得积分10
1秒前
小羊完成签到 ,获得积分10
1秒前
东尼完成签到,获得积分10
1秒前
wjx完成签到,获得积分10
1秒前
1秒前
1秒前
只争朝夕应助曾馨慧采纳,获得10
2秒前
球球完成签到,获得积分10
2秒前
hky发布了新的文献求助10
2秒前
刘澳完成签到,获得积分20
3秒前
张志远完成签到,获得积分10
3秒前
3秒前
领导范儿应助彦妮儿采纳,获得10
3秒前
qqwwe完成签到 ,获得积分10
3秒前
无私的迎松完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
NexusExplorer应助cookingmouse采纳,获得10
4秒前
GQ完成签到,获得积分10
4秒前
小熊完成签到,获得积分10
5秒前
黑苹果完成签到,获得积分0
5秒前
5秒前
6秒前
6秒前
6秒前
bkagyin应助徐biao采纳,获得10
6秒前
6秒前
黑大帅完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
迅速大山发布了新的文献求助10
7秒前
潘莘遥发布了新的文献求助10
7秒前
雨中小王应助刘澳采纳,获得10
7秒前
动听的秋灵完成签到,获得积分10
7秒前
8秒前
所所应助王士豪采纳,获得10
8秒前
深情安青应助TTT采纳,获得10
8秒前
SallyChen发布了新的文献求助30
8秒前
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671