Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 基因 高分子化学 化学 社会学 生物化学 社会科学
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
在水一方应助小垃圾采纳,获得10
1秒前
2秒前
2秒前
2秒前
孙萌萌完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
merlinsong完成签到,获得积分10
4秒前
ahua关注了科研通微信公众号
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Cherish完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
yi发布了新的文献求助10
5秒前
聪慧小霜应助科研通管家采纳,获得20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
求知者1701应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
VDC应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
现实的问玉完成签到 ,获得积分10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
孙萌萌发布了新的文献求助20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403