Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 基因 高分子化学 化学 社会学 生物化学 社会科学
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茹茹完成签到 ,获得积分10
刚刚
1秒前
1秒前
001完成签到,获得积分10
1秒前
ytc完成签到,获得积分10
1秒前
wuqs完成签到,获得积分10
1秒前
椛鈊完成签到,获得积分10
2秒前
2秒前
温暖从梦发布了新的文献求助10
3秒前
浅是宝贝完成签到,获得积分10
3秒前
端端发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
刘kk发布了新的文献求助10
6秒前
不知道发布了新的文献求助10
7秒前
wyh应助花灯王子采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
鲤鱼孤兰关注了科研通微信公众号
9秒前
丘比特应助于富强采纳,获得10
9秒前
赘婿应助王彦林采纳,获得10
10秒前
AsRNA发布了新的文献求助10
10秒前
bing完成签到,获得积分10
10秒前
小马甲应助温暖从梦采纳,获得10
10秒前
10秒前
12秒前
Li完成签到,获得积分10
13秒前
14秒前
14秒前
fff发布了新的文献求助10
15秒前
15秒前
是关心发布了新的文献求助10
15秒前
温暖从梦完成签到,获得积分20
16秒前
hklong完成签到,获得积分10
16秒前
Yaon-Xu发布了新的文献求助10
16秒前
蒋浩波完成签到,获得积分10
17秒前
18秒前
Jasper应助风中云采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637632
求助须知:如何正确求助?哪些是违规求助? 4743709
关于积分的说明 14999836
捐赠科研通 4795711
什么是DOI,文献DOI怎么找? 2562180
邀请新用户注册赠送积分活动 1521649
关于科研通互助平台的介绍 1481599