Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 社会科学 生物化学 化学 社会学 高分子化学 基因
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果子荆完成签到,获得积分10
1秒前
qluo001完成签到,获得积分10
2秒前
清欢完成签到,获得积分10
2秒前
文剑武书生完成签到,获得积分10
3秒前
HH完成签到,获得积分10
3秒前
得了MVP完成签到,获得积分10
4秒前
juanjuan完成签到,获得积分10
4秒前
4秒前
4秒前
荒谬完成签到,获得积分10
5秒前
阿屁屁猪完成签到,获得积分10
6秒前
潘忠旭完成签到,获得积分10
6秒前
ceeray23应助热锅上的蚂蚁采纳,获得10
6秒前
牛马小白完成签到,获得积分10
6秒前
张兴博完成签到 ,获得积分10
7秒前
lj完成签到 ,获得积分10
7秒前
yannna完成签到,获得积分10
7秒前
super完成签到,获得积分20
7秒前
欢欢完成签到,获得积分10
8秒前
充电宝应助Frozen Flame采纳,获得10
8秒前
思源应助Frozen Flame采纳,获得10
8秒前
火星上蜗牛完成签到 ,获得积分10
8秒前
FashionBoy应助Frozen Flame采纳,获得10
8秒前
田様应助Frozen Flame采纳,获得10
8秒前
科研通AI6应助Frozen Flame采纳,获得30
8秒前
xrl完成签到 ,获得积分10
9秒前
10秒前
Dylan21完成签到,获得积分10
10秒前
噼里啪啦完成签到,获得积分10
10秒前
活泼红牛完成签到,获得积分10
11秒前
我是老大应助西升东落采纳,获得10
12秒前
一呦呦完成签到,获得积分10
12秒前
12秒前
斯文鸡完成签到,获得积分10
12秒前
浮游应助yannna采纳,获得10
13秒前
LILI完成签到,获得积分10
13秒前
苏芳完成签到,获得积分10
14秒前
15秒前
无声瀑布完成签到,获得积分10
15秒前
wls完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349