Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 社会科学 生物化学 化学 社会学 高分子化学 基因
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热行云完成签到,获得积分10
刚刚
2秒前
肖敏发布了新的文献求助10
2秒前
坦率的匪发布了新的文献求助100
3秒前
3秒前
求助哥完成签到,获得积分10
4秒前
5秒前
Zhohy发布了新的文献求助10
6秒前
welldown完成签到,获得积分10
6秒前
如初完成签到,获得积分10
8秒前
8秒前
帅气男孩发布了新的文献求助10
8秒前
yyyyyge完成签到,获得积分10
8秒前
栀蓝完成签到 ,获得积分10
9秒前
加油小海豚完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
祁行云发布了新的文献求助10
14秒前
桃花不用开了完成签到,获得积分10
14秒前
15秒前
15秒前
个性的罡完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
极速小鱼完成签到 ,获得积分20
18秒前
完美世界应助王振123654采纳,获得10
19秒前
19秒前
四体不勤发布了新的文献求助10
20秒前
22秒前
22秒前
cocaco发布了新的文献求助10
22秒前
南方发布了新的文献求助10
22秒前
22秒前
Ava应助ccl采纳,获得10
23秒前
风清扬发布了新的文献求助10
23秒前
迷路的尔丝完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299