Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 社会科学 生物化学 化学 社会学 高分子化学 基因
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzhnb完成签到,获得积分10
刚刚
nojego完成签到,获得积分10
刚刚
倩倩完成签到,获得积分10
刚刚
hhh完成签到 ,获得积分10
刚刚
苏苏完成签到 ,获得积分10
刚刚
ShanYexia完成签到,获得积分10
1秒前
星辰大海应助轻松豌豆采纳,获得10
1秒前
xyj完成签到,获得积分10
1秒前
上官若男应助jinzhituoyan采纳,获得10
2秒前
李健的小迷弟应助wzhnb采纳,获得10
4秒前
5秒前
WZL完成签到,获得积分10
5秒前
xiekunwhy完成签到,获得积分10
5秒前
大魔王完成签到 ,获得积分10
6秒前
啤酒半斤完成签到,获得积分10
6秒前
7秒前
淡然冬灵发布了新的文献求助10
7秒前
Ming完成签到,获得积分10
9秒前
durance完成签到,获得积分10
9秒前
tiger完成签到,获得积分10
9秒前
西因应助小新麻麻采纳,获得10
10秒前
九月发布了新的文献求助10
11秒前
刘大白发布了新的文献求助10
11秒前
隐形曼青应助jiaman1031采纳,获得10
11秒前
12秒前
宜菏发布了新的文献求助20
13秒前
14秒前
追寻翩跹完成签到,获得积分10
14秒前
cc951229完成签到,获得积分10
15秒前
孙一完成签到,获得积分10
15秒前
15秒前
16秒前
zenabia完成签到 ,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
wzhnb发布了新的文献求助10
19秒前
丘比特应助姜恒采纳,获得10
19秒前
God完成签到 ,获得积分10
20秒前
kiana完成签到,获得积分10
22秒前
qianlu完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144