亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Adversarial Robustness of Multi-modal Recommendation via Modality Balancing

情态动词 计算机科学 稳健性(进化) 模态(人机交互) 利用 模式 脆弱性(计算) 对抗制 人工智能 边距(机器学习) 机器学习 数据挖掘 计算机安全 基因 高分子化学 化学 社会学 生物化学 社会科学
作者
Yu Shang,Chen Gao,Jiansheng Chen,Depeng Jin,Huimin Ma,Yong Li
标识
DOI:10.1145/3581783.3612337
摘要

Recently multi-modal recommender systems have been widely applied in real scenarios such as e-commerce businesses. Existing multi-modal recommendation methods exploit the multi-modal content of items as auxiliary information and fuse them to boost performance. Despite the superior performance achieved by multi-modal recommendation models, there's currently no understanding of their robustness to adversarial attacks. In this work, we first identify the vulnerability of existing multi-modal recommendation models. Next, we show the key reason for such vulnerability is modality imbalance, i.e., the prediction score margin between positive and negative samples in the sensitive modality will drop dramatically facing adversarial attacks and fail to be compensated by other modalities. Finally, based on this finding we propose a novel defense method to enhance the robustness of multi-modal recommendation models through modality balancing. Specifically, we first adopt an embedding distillation to obtain a pair of content-similar but prediction-different item embeddings in the sensitive modality and calculate the score margin reflecting the modality vulnerability. Then we optimize the model to utilize the score margin between positive and negative samples in other modalities to compensate for the vulnerability. The proposed method can serve as a plug-and-play module and is flexible to be applied to a wide range of multi-modal recommendation models. Extensive experiments on two real-world datasets demonstrate that our method significantly improves the robustness of multi-modal recommendation models with nearly no performance degradation on clean data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wave8013完成签到 ,获得积分10
11秒前
13秒前
16秒前
丘比特应助神医magical采纳,获得10
22秒前
ceeray23发布了新的文献求助20
23秒前
烂漫的绿茶完成签到 ,获得积分10
30秒前
打打应助orion采纳,获得10
31秒前
56秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
loii应助科研通管家采纳,获得200
1分钟前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
小铭同学完成签到,获得积分10
1分钟前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
1分钟前
orion发布了新的文献求助10
1分钟前
传奇3应助hhhhhh采纳,获得10
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
2分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
oi完成签到 ,获得积分10
3分钟前
大个应助计划采纳,获得30
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
NINI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
神医magical发布了新的文献求助10
3分钟前
yishang发布了新的文献求助10
3分钟前
3分钟前
愉快的犀牛完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628321
求助须知:如何正确求助?哪些是违规求助? 4716547
关于积分的说明 14964063
捐赠科研通 4786065
什么是DOI,文献DOI怎么找? 2555581
邀请新用户注册赠送积分活动 1516838
关于科研通互助平台的介绍 1477380