Microalgal biomasses have been established as promising biosorbents for biosorption to remove heavy metal ions (HMIs) from wastewaters and contaminated natural waterbodies. Understanding the mechanism is important for the development of cost-effective processes for large scale applications. In this paper, a simple mathematical model was proposed for the predication of biosorption capacity of HMI by microalgal cells based on single cell mass, cell size, and HMI radius. One fundamental assumption based on which this model was developed, i.e., the biosorption of HMI by microalgal cells is predominantly monolayer bio-adsorption, was established based on kinetic, isothermal, FTIR, and Pb(II) distribution data generated in this study and in literature. The model was validated using a combination of experimental and literature data as well, demonstrating its capability to provide reasonable estimations although with discrepancies. The biosorption capacities of HMIs (mmol/g) by Chlorella vulgaris were experimentally determined to be in the following order: Pb(II)(0.360)> Zn(II)(0.325)> Cu(II)(0.254)> Ni(II)(0.249)> Cd(II)(0.235)> Co(II)(0.182). We systematically investigated the deviations of the predicted biosorption capacities in term of the effects of a few important parameters that were unaccounted for in the model, including the nanostructures on cell surface, HMI electronegativity, and biosorption buffer pH. Results suggest that the nanostructures on cell wall, likely the hairlike fibers, might be the primary locations where the binding sites for HMI were housed. Furthermore, isothermal data, which is suported by the predictions of this model, indicate the each effective binding site on C. vulgaris cell surface could bind to more than one Co(II) in biosorption while each of the other five HMIs tested in this study required more than one binding sites.