Semi-Supervised Urban Change Detection Using Multi-Modal Sentinel-1 SAR and Sentinel-2 MSI Data

计算机科学 合成孔径雷达 多光谱图像 遥感 深度学习 人工智能 分割 地理
作者
Sebastian Häfner,Yifang Ban,Andrea Nascetti
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (21): 5135-5135 被引量:5
标识
DOI:10.3390/rs15215135
摘要

Urbanization is progressing at an unprecedented rate in many places around the world. The Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) missions, combined with deep learning, offer new opportunities to accurately monitor urbanization at a global scale. Although the joint use of SAR and optical data has recently been investigated for urban change detection, existing data fusion methods rely heavily on the availability of sufficient training labels. Meanwhile, change detection methods addressing label scarcity are typically designed for single-sensor optical data. To overcome these limitations, we propose a semi-supervised urban change detection method that exploits unlabeled Sentinel-1 SAR and Sentinel-2 MSI data. Using bitemporal SAR and optical image pairs as inputs, the proposed multi-modal Siamese network predicts urban changes and performs built-up area segmentation for both timestamps. Additionally, we introduce a consistency loss, which penalizes inconsistent built-up area segmentation across sensor modalities on unlabeled data, leading to more robust features. To demonstrate the effectiveness of the proposed method, the SpaceNet 7 dataset, comprising multi-temporal building annotations from rapidly urbanizing areas across the globe, was enriched with Sentinel-1 SAR and Sentinel-2 MSI data. Subsequently, network performance was analyzed under label-scarce conditions by training the network on different fractions of the labeled training set. The proposed method achieved an F1 score of 0.555 when using all available training labels, and produced reasonable change detection results (F1 score of 0.491) even with as little as 10% of the labeled training data. In contrast, multi-modal supervised methods and semi-supervised methods using optical data failed to exceed an F1 score of 0.402 under this condition. Code and data are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大雪完成签到 ,获得积分10
1秒前
超帅沂完成签到,获得积分10
1秒前
wonderful完成签到,获得积分10
1秒前
Yiyyan完成签到 ,获得积分10
1秒前
非洲散打地黄完成签到 ,获得积分10
1秒前
1秒前
longyuyan完成签到,获得积分10
2秒前
独指蜗牛完成签到,获得积分10
4秒前
Jocd完成签到,获得积分10
4秒前
迎海完成签到,获得积分10
5秒前
Yolo完成签到,获得积分10
5秒前
yang发布了新的文献求助10
6秒前
SaturnY完成签到,获得积分10
6秒前
nozero应助WxChen采纳,获得10
6秒前
hansa完成签到,获得积分0
6秒前
6秒前
7秒前
伍教授完成签到,获得积分10
7秒前
风趣的南霜完成签到,获得积分10
7秒前
7秒前
7秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
喵拟吗喵完成签到,获得积分10
8秒前
wyw123完成签到,获得积分10
8秒前
8秒前
今天只做一件事应助zzq采纳,获得50
9秒前
劉牛完成签到 ,获得积分10
9秒前
唯一发布了新的文献求助10
9秒前
10秒前
一顿吃不饱完成签到,获得积分0
10秒前
asdfghjk完成签到,获得积分10
10秒前
淡然的世倌完成签到,获得积分10
10秒前
STZHEN完成签到,获得积分10
11秒前
科研通AI5应助xyh361采纳,获得10
11秒前
暗栀发布了新的文献求助10
11秒前
qingli发布了新的文献求助10
13秒前
米线发布了新的文献求助10
13秒前
呆萌晓啸完成签到,获得积分10
14秒前
大饼子圆完成签到 ,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
《中国建设》英文版对中国国家形象的呈现研究(1952-1965) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3650762
求助须知:如何正确求助?哪些是违规求助? 3215272
关于积分的说明 9705387
捐赠科研通 2923005
什么是DOI,文献DOI怎么找? 1600857
邀请新用户注册赠送积分活动 753733
科研通“疑难数据库(出版商)”最低求助积分说明 732859