Mechanically Rupturing Liquid Metal Oxide Induces Electrochemical Energy

材料科学 液态金属 可伸缩电子设备 氧化物 原电池 纳米技术 柔性电子器件 导电体 图层(电子) 电池(电) 数码产品 复合材料 光电子学 电气工程 冶金 功率(物理) 工程类 物理 量子力学
作者
Xing Ye,Zhaoyi Zheng,Jörg G. Werner,J. William Boley
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (31) 被引量:9
标识
DOI:10.1002/adfm.202309177
摘要

Abstract Liquid metals, such as Gallium‐based alloys, have unique mechanical and electrical properties because they behave like liquid at room temperature. These properties make liquid metals favorable for soft electronics and stretchable conductors. In addition, these metals spontaneously form a thin oxide layer on their surface. Applications made possible by this delicate oxide skin include shape reconfigurable electronics, 3D‐printed structures, and unconventional actuators. This paper introduces a new approach where liquid metal oxide serves as an electrochemical energy source. By mechanically rupturing their surface oxide, liquid metals form a galvanic cell and convert their chemical energy to electrical energy. When dispersing liquid metals into an ionically‐conductive liquid to form emulsions, this composite material can provide ∼500 mV of open‐circuit voltage and up to ∼4 μ W of power. Protected by the naturally occurring oxide skin, the passivating oxide layer of the liquid metal shields it from self‐discharge over time. The device is also stable in harsh environments, such as high temperature or aquatic conditions. Future applications of this device are demonstrated by designing a strain‐activated stretchable battery and a pressure‐sensitive self‐powered keypad. These findings may unlock new pathways to design stretchable batteries and harness their inherent energy for self‐powered robust devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ST发布了新的文献求助10
刚刚
科小白完成签到 ,获得积分10
1秒前
Dean应助huhdcid采纳,获得200
1秒前
letter发布了新的文献求助10
2秒前
叁壹粑粑发布了新的文献求助30
2秒前
灵巧的鲂发布了新的文献求助10
2秒前
元宝团子完成签到,获得积分10
3秒前
丁一完成签到,获得积分20
3秒前
李爱国应助6692067采纳,获得10
3秒前
钟意完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
lucas完成签到,获得积分10
3秒前
Refuel发布了新的文献求助10
4秒前
4秒前
4秒前
英姑应助dotty采纳,获得10
5秒前
米缸发布了新的文献求助10
6秒前
7秒前
小二郎应助欣喜柚子采纳,获得10
9秒前
10秒前
10秒前
10秒前
Eraser完成签到,获得积分10
11秒前
小小完成签到,获得积分10
13秒前
letter完成签到,获得积分10
13秒前
只昂张发布了新的文献求助10
13秒前
无敌霸王花应助终醒采纳,获得20
13秒前
15秒前
酷炫的安雁完成签到 ,获得积分10
15秒前
16秒前
LAN0528完成签到,获得积分10
17秒前
笃定发布了新的文献求助10
17秒前
zcl应助温暖的雨旋采纳,获得100
18秒前
6692067发布了新的文献求助10
18秒前
19秒前
木木完成签到,获得积分20
19秒前
叁壹粑粑发布了新的文献求助30
20秒前
学术蛔虫完成签到 ,获得积分10
21秒前
Olsters完成签到,获得积分10
22秒前
123321完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429