Interpretable machine learning framework for catalyst performance prediction and validation with dry reforming of methane

可解释性 预处理器 数据预处理 计算机科学 甲烷 黑匣子 机器学习 组分(热力学) 多样性(控制论) 人工智能 生化工程 化学 工程类 物理 有机化学 热力学
作者
Jiwon Roh,Hyundo Park,Hyukwon Kwon,Hyungtae Cho,Il Moon,Hyungtae Cho,Insoo Ro,Junghwan Kim
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:343: 123454-123454 被引量:14
标识
DOI:10.1016/j.apcatb.2023.123454
摘要

Conventional methods for developing heterogeneous catalysts are inefficient in time and cost, often relying on trial-and-error. The integration of machine-learning (ML) in catalysis research using data can reduce computational costs and provide valuable insights. However, the lack of interpretability in black-box models hinders their acceptance among researchers. We propose an interpretable ML framework that enables a comprehensive understanding of the complex relationships between variables. Our framework incorporates tools such as Shapley additive explanations and partial dependence values for effective data preprocessing and result analysis. This framework increases the prediction accuracy of the model with improved R2 value of 0.96, while simultaneously expanding the catalyst component variety. Furthermore, for the case of dry reforming of methane, we tested the validity of the catalyst recommendation through dedicated experimental tests. The outstanding performance of the framework has the potential to expedite the rational design of catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小庄采纳,获得10
刚刚
1秒前
侦察兵发布了新的文献求助10
1秒前
司徒元瑶完成签到 ,获得积分10
1秒前
梓榆发布了新的文献求助10
1秒前
1秒前
sweetbearm应助通~采纳,获得10
1秒前
斯文败类应助成就映秋采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
2秒前
moonlin完成签到 ,获得积分10
2秒前
3秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
思源应助蟹黄堡不打折采纳,获得10
5秒前
Lily应助科研通管家采纳,获得40
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
zzzq应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
皮皮完成签到 ,获得积分10
5秒前
sallltyyy发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
QPP完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
喜悦中道应助科研通管家采纳,获得10
5秒前
wzxxxx发布了新的文献求助10
6秒前
冬瓜炖排骨完成签到,获得积分10
6秒前
6666发布了新的文献求助10
6秒前
BB发布了新的文献求助10
7秒前
冷静雅青完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794