The association between clinical, sociodemographic, familial, and environmental factors and treatment resistance in schizophrenia: A machine-learning-based approach

精神分裂症(面向对象编程) 婚姻状况 心理学 抗精神病药 临床心理学 智商 氯氮平 医学 精神科 人口 认知 环境卫生
作者
Carmen F.M. van Hooijdonk,Marieke van der Pluijm,Bart M. de Vries,Matthijs C.F. Cysouw,Behrooz Z. Alizadeh,Claudia Simons,Thérèse van Amelsvoort,Jan Booij,Jean‐Paul Selten,Lieuwe de Haan,Frederike Schirmbeck,Elsmarieke van de Giessen
出处
期刊:Schizophrenia Research [Elsevier]
卷期号:262: 132-141
标识
DOI:10.1016/j.schres.2023.10.030
摘要

Prediction of treatment resistance in schizophrenia (TRS) would be helpful to reduce the duration of ineffective treatment and avoid delays in clozapine initiation. We applied machine learning to identify clinical, sociodemographic, familial, and environmental variables that are associated with TRS and could potentially predict TRS in the future. Baseline and follow-up data on trait(-like) variables from the Genetic Risk and Outcome of Psychosis (GROUP) study were used. For the main analysis, we selected patients with non-affective psychotic disorders who met TRS (n = 200) or antipsychotic-responsive criteria (n = 423) throughout the study. For a sensitivity analysis, we only selected patients who met TRS (n = 76) or antipsychotic-responsive criteria (n = 123) at follow-up but not at baseline. Random forest models were trained to predict TRS in both datasets. SHapley Additive exPlanation values were used to examine the variables' contributions to the prediction. Premorbid functioning, age at onset, and educational degree were most consistently associated with TRS across both analyses. Marital status, current household, intelligence quotient, number of moves, and family loading score for substance abuse also consistently contributed to the prediction of TRS in the main or sensitivity analysis. The diagnostic performance of our models was modest (area under the curve: 0.66–0.69). We demonstrate that various clinical, sociodemographic, familial, and environmental variables are associated with TRS. Our models only showed modest performance in predicting TRS. Prospective large multi-centre studies are needed to validate our findings and investigate whether the model's performance can be improved by adding data from different modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李不慌完成签到,获得积分10
1秒前
1秒前
hhhh完成签到 ,获得积分10
3秒前
领导范儿应助小象采纳,获得10
4秒前
Edison完成签到,获得积分10
6秒前
清新发布了新的文献求助10
7秒前
跳跃的香完成签到,获得积分10
8秒前
JamesPei应助xiaoyu采纳,获得10
9秒前
10秒前
完美世界应助okei采纳,获得10
10秒前
Shayulajiao发布了新的文献求助30
10秒前
Akim应助Edison采纳,获得10
11秒前
12秒前
wzZ完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
米糊发布了新的文献求助10
16秒前
毛豆应助mermer采纳,获得10
17秒前
Jonathan发布了新的文献求助10
17秒前
nonTUT发布了新的文献求助10
17秒前
yy完成签到,获得积分20
18秒前
18秒前
20秒前
今时今日发布了新的文献求助30
22秒前
yy发布了新的文献求助30
22秒前
CipherSage应助nonTUT采纳,获得10
24秒前
调研昵称发布了新的文献求助10
24秒前
wanghuan发布了新的文献求助10
25秒前
FashionBoy应助brownnose采纳,获得10
27秒前
虹归于叶完成签到 ,获得积分10
27秒前
纯真的雨完成签到 ,获得积分10
29秒前
小海完成签到,获得积分10
29秒前
清爽水彤完成签到 ,获得积分10
30秒前
赘婿应助健忘的白秋采纳,获得10
31秒前
潘小辰完成签到,获得积分10
32秒前
32秒前
cjh发布了新的文献求助10
35秒前
淡水痕发布了新的文献求助10
38秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458942
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037299
捐赠科研通 2742793
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694553