钻孔
Python(编程语言)
计算机科学
霍夫变换
软件
人工智能
图像处理
假阳性悖论
数据处理
计算机视觉
模式识别(心理学)
地质学
图像(数学)
数据库
岩土工程
程序设计语言
操作系统
作者
Jorge Alberto Leal,L. H. Ochoa Gutierrez,Sergio Francisco Acosta Lenis
标识
DOI:10.15446/esrj.v27n2.101556
摘要
In this research computer vision techniques are applied to borehole resistivity imaging in order to establish an alternative procedure to the mean square dip (MSD) processing. The MSD is regularly applied to detect sinusoids and dips automatically in borehole imaging and dipmeter logs. The present proposal is based on Gabor’s filters, morphological transformations, Hough’s transform, and clustering techniques. The MSD method and the computer vision proposal were tested in 1012 m of images, showing 7.986% of false positives for the MSD processing and 0.879% for the computer vision approach. This methodology tries to emulate the geologists behavior when they make image interpretation; instead of making correlations between resistivity curves like the MSD does. There are no special computer requirements, and it can be applied directly in the field for quick well-site dip results. This procedure can be easily integrated into log units and most commercial borehole-imaging processing software. The processing workflow was developed in python using standard libraries.
科研通智能强力驱动
Strongly Powered by AbleSci AI