兰姆达
正多边形
数学
班级(哲学)
类型(生物学)
数学分析
能量(信号处理)
非线性系统
数学物理
物理
几何学
量子力学
计算机科学
生态学
统计
人工智能
生物
作者
Jianhua Chen,Xianjiu Huang,Bitao Cheng
标识
DOI:10.1007/s11464-021-0071-1
摘要
In this paper, we study a class of Kirchhoff type equations with concave and convex nonlinearities and steep potential well. Firstly, we obtain a positive energy solution $$u_{b,\lambda}^ + $$ by a truncated functional. Furthermore, the concentration behavior of $$u_{b,\lambda}^ + $$ is also explored on the set V−1 (0) as λ → ∞. Secondly, we also give the existence of a negative solution $$u_{b,\lambda}^ - $$ via Ekeland variational principle. Finally, we show a nonexistence result of the nontrivial solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI