Shield Against Gradient Leakage Attacks: Adaptive Privacy-Preserving Federated Learning

计算机科学 差别隐私 上传 通知 泄漏(经济) 趋同(经济学) 梯度下降 信息泄露 私人信息检索 联合学习 计算机安全 数据挖掘 人工智能 人工神经网络 宏观经济学 经济 法学 操作系统 经济增长 政治学
作者
Jiahui Hu,Zhibo Wang,Shen Yong-sheng,Bohan Lin,Peng Sun,Xiaoyi Pang,Jian Liu,Kui Ren
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 1407-1422 被引量:9
标识
DOI:10.1109/tnet.2023.3317870
摘要

Federated learning (FL) requires frequent uploading and updating of model parameters, which is naturally vulnerable to gradient leakage attacks (GLAs) that reconstruct private training data through gradients. Although some works incorporate differential privacy (DP) into FL to mitigate such privacy issues, their performance is not satisfactory since they did not notice that GLA incurs heterogeneous risks of privacy leakage (RoPL) with respect to gradients from different communication rounds and clients. In this paper, we propose an Adaptive Privacy-Preserving Federated Learning (Adp-PPFL) framework to achieve satisfactory privacy protection against GLA, while ensuring good performance in terms of model accuracy and convergence speed. Specifically, a leakage risk-aware privacy decomposition mechanism is proposed to provide adaptive privacy protection to different communication rounds and clients by dynamically allocating the privacy budget according to the quantified RoPL. In particular, we exploratively design a round-level and a client-level RoPL quantification method to measure the possible risks of GLA breaking privacy from gradients in different communication rounds and clients respectively, which only employ the limited information in general FL settings. Furthermore, to improve the FL model training performance (i.e., convergence speed and global model accuracy), we propose an adaptive privacy-preserving local training mechanism that dynamically clips the gradients and decays the noises added to the clipped gradients during the local training process. Extensive experiments show that our framework outperforms the existing differentially private FL schemes on model accuracy, convergence, and attack resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melon完成签到,获得积分10
刚刚
长雁应助shuang采纳,获得10
刚刚
刚刚
skepticalsnails完成签到,获得积分0
1秒前
samuealndjw完成签到,获得积分10
1秒前
莫生完成签到,获得积分10
2秒前
东东呀完成签到,获得积分10
3秒前
Zachary完成签到,获得积分10
3秒前
彭洪凯完成签到,获得积分10
3秒前
高兴的问儿完成签到 ,获得积分10
3秒前
一只滦完成签到,获得积分10
4秒前
xu发布了新的文献求助10
5秒前
5秒前
随遇而安应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
iNk应助科研通管家采纳,获得20
6秒前
慕青应助科研通管家采纳,获得10
6秒前
体贴的乐松完成签到,获得积分10
6秒前
李健应助快乐的紫寒采纳,获得10
6秒前
黑粉头头完成签到,获得积分10
6秒前
小甘看世界完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
COCO完成签到,获得积分10
8秒前
WSYang完成签到,获得积分10
8秒前
8秒前
wangyf完成签到,获得积分10
8秒前
发酒疯很方便吃完成签到,获得积分10
8秒前
欢呼的傲旋完成签到,获得积分10
9秒前
666完成签到 ,获得积分10
9秒前
10秒前
格纹完成签到,获得积分10
11秒前
AMM完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729255
求助须知:如何正确求助?哪些是违规求助? 3274428
关于积分的说明 9985420
捐赠科研通 2989636
什么是DOI,文献DOI怎么找? 1640667
邀请新用户注册赠送积分活动 779292
科研通“疑难数据库(出版商)”最低求助积分说明 748165