亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preprocessing high-definition images: interpretable feature extraction with pre-trained StyleGAN

人工智能 计算机科学 模式识别(心理学) 特征提取 预处理器 鉴别器 分类器(UML) 可解释性 自编码 人工神经网络 计算机视觉 探测器 电信
作者
Ke Zhang,Wenning Hao,Xiaohan Yu,T. Shao,Qiuhui Shen
标识
DOI:10.1117/12.3008039
摘要

The interpretable image classifier VAE-FNN can extract high-level features for classification from complex image information and provide explanations that are consistent with human intuition. However, due to the insufficient reconstruction ability of VAE, there are still challenges in feature extraction and interpretable classification for highdefinition images. An image preprocessing method is proposed in this paper and a model named E2GAN that can extract low-dimensional interpretable features from high-definition images is constructed. The model is based on a pre-trained StyleGAN generator, and two mapping networks are trained, one for extracting the low-dimensional compressed encoding of the input image and the other for restoring it to the matrix representation required by the StyleGAN generator, which effectively improves the quality of feature extraction and image reconstruction. A discriminator is introduced to perform adversarial training with the mapping network, further improving the realism of the reconstructed image. The training algorithm of the E2GAN model is designed, and a decoupling loss for the low-dimensional encoding is added to further improve its semantic interpretability. Experiments on the CelebA-HQ dataset show that the E2GAN model can extract low-dimensional, semantically informative features from high-definition images, which can be used to train high-precision and interpretable fuzzy neural network classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱子完成签到 ,获得积分10
3秒前
ceeray23应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
20秒前
天天快乐应助饭团不吃鱼采纳,获得10
25秒前
34秒前
38秒前
47秒前
CodeCraft应助Ss采纳,获得10
55秒前
1分钟前
1分钟前
落寞惮发布了新的文献求助10
1分钟前
1分钟前
Wone3完成签到 ,获得积分10
1分钟前
LZY完成签到,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
张安然发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Akim应助熊二采纳,获得10
2分钟前
研研研究不出完成签到 ,获得积分10
2分钟前
xixun完成签到 ,获得积分20
2分钟前
落寞惮完成签到,获得积分10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
张安然完成签到,获得积分10
2分钟前
熊二发布了新的文献求助10
2分钟前
Jasper应助安详的面包采纳,获得10
2分钟前
2分钟前
依然灬聆听完成签到,获得积分10
2分钟前
英勇的小熊猫完成签到 ,获得积分10
2分钟前
3分钟前
W_x完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478