Preprocessing high-definition images: interpretable feature extraction with pre-trained StyleGAN

人工智能 计算机科学 模式识别(心理学) 特征提取 预处理器 鉴别器 分类器(UML) 可解释性 自编码 人工神经网络 计算机视觉 探测器 电信
作者
Ke Zhang,Wenning Hao,Xiaohan Yu,T. Shao,Qiuhui Shen
标识
DOI:10.1117/12.3008039
摘要

The interpretable image classifier VAE-FNN can extract high-level features for classification from complex image information and provide explanations that are consistent with human intuition. However, due to the insufficient reconstruction ability of VAE, there are still challenges in feature extraction and interpretable classification for highdefinition images. An image preprocessing method is proposed in this paper and a model named E2GAN that can extract low-dimensional interpretable features from high-definition images is constructed. The model is based on a pre-trained StyleGAN generator, and two mapping networks are trained, one for extracting the low-dimensional compressed encoding of the input image and the other for restoring it to the matrix representation required by the StyleGAN generator, which effectively improves the quality of feature extraction and image reconstruction. A discriminator is introduced to perform adversarial training with the mapping network, further improving the realism of the reconstructed image. The training algorithm of the E2GAN model is designed, and a decoupling loss for the low-dimensional encoding is added to further improve its semantic interpretability. Experiments on the CelebA-HQ dataset show that the E2GAN model can extract low-dimensional, semantically informative features from high-definition images, which can be used to train high-precision and interpretable fuzzy neural network classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老肖发布了新的文献求助10
1秒前
menghongmei完成签到 ,获得积分10
2秒前
2秒前
大菊完成签到,获得积分10
3秒前
3秒前
6秒前
yuyan发布了新的文献求助10
7秒前
晗月完成签到,获得积分10
8秒前
科目三应助新威宝贝采纳,获得10
8秒前
开心超人完成签到,获得积分10
11秒前
无限冰旋发布了新的文献求助10
11秒前
12秒前
会武功的阿吉完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
ixueyi发布了新的文献求助10
16秒前
专注棒棒糖完成签到 ,获得积分10
17秒前
17秒前
粥粥完成签到 ,获得积分10
19秒前
21秒前
顺心微笑发布了新的文献求助10
22秒前
24秒前
核桃应助mmyhn采纳,获得10
25秒前
自由能发布了新的文献求助10
26秒前
CC发布了新的文献求助10
28秒前
Moi关闭了Moi文献求助
30秒前
十分喜欢发布了新的文献求助10
31秒前
家伟发布了新的文献求助20
31秒前
慕青应助自由能采纳,获得10
32秒前
无限冰旋完成签到,获得积分10
33秒前
33秒前
34秒前
喵喵喵喵喵喵喵完成签到,获得积分10
36秒前
36秒前
kk发布了新的文献求助30
38秒前
不发SCI不罢休的小菜完成签到 ,获得积分20
38秒前
Akim应助zs采纳,获得10
39秒前
自由能完成签到,获得积分20
41秒前
41秒前
Torment发布了新的文献求助10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713