Identifying Relationships and Classifying Western-Style Paintings: Machine Learning Approaches for Artworks by Western Artists and Meiji-Era Japanese Artists

风格(视觉艺术) 绘画 视觉艺术 艺术 日本艺术 质量(理念) 人工智能 计算机科学 哲学 认识论
作者
Phongtharin Vinayavekhin,Banphatree Khomkham,Vorapong Suppakitpaisarn,Philippe Codognet,Torahiko Terada,Akira Miura
出处
期刊:Journal on computing and cultural heritage [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3631136
摘要

Many Western-style paintings by Japanese artists in the early 1900s, though maintaining a unique quality, were greatly inspired by the works of Western artists. In this paper, we employ machine learning to identify relationships and classify the works of Japanese and Western artists. The relationships are of significant interest to numerous art historians, as they can reveal how Western art was introduced to Japan. Historically, art historians have manually annotated these correspondences, which is a time-consuming and labor-intensive process. In this paper, we introduce a new method for finding correspondences between related artworks by comparing their overall outline information. This technique is based on Siamese neural networks (SNNs) and a self-supervised learning approach. Additionally, we have compiled a dataset of illustrations from Japanese artists such as Seiki Kuroda and Western artists such as Raphaël Collin, complete with correspondence annotations. On the other hand, to exhibit the unique quality of works by Japanese artists, we demonstrate that machine learning can classify between artworks created by Japanese artists and those created by Western artists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱熊sama完成签到,获得积分10
2秒前
皓哥无敌帅完成签到,获得积分10
4秒前
7秒前
轨迹发布了新的文献求助10
8秒前
陶醉的世立完成签到,获得积分10
8秒前
David完成签到,获得积分10
9秒前
kfxs发布了新的文献求助30
9秒前
orixero应助畅快璎采纳,获得10
10秒前
bear完成签到,获得积分10
10秒前
12秒前
eternity136发布了新的文献求助10
12秒前
leftarrow完成签到,获得积分10
13秒前
莫咲发布了新的文献求助50
14秒前
田様应助LionontheMars采纳,获得10
15秒前
16秒前
zho应助佳2采纳,获得10
16秒前
招招完成签到,获得积分10
16秒前
NexusExplorer应助vv230采纳,获得30
19秒前
斯文败类应助科研小白采纳,获得10
19秒前
搜集达人应助协和小飞龙采纳,获得10
20秒前
20秒前
zho应助cjh采纳,获得10
20秒前
科研通AI2S应助Anonymous采纳,获得10
20秒前
南风发布了新的文献求助10
21秒前
Jasper应助平常的广缘采纳,获得10
21秒前
22秒前
wking应助Moriarty采纳,获得50
24秒前
沸羊羊发布了新的文献求助10
24秒前
26秒前
xx发布了新的文献求助10
26秒前
27秒前
活力遥完成签到,获得积分20
28秒前
畅快璎发布了新的文献求助10
29秒前
刘十一完成签到,获得积分10
29秒前
NexusExplorer应助zjl采纳,获得10
31秒前
小二郎应助xx采纳,获得10
31秒前
南风发布了新的文献求助10
32秒前
bkagyin应助wujiasheng采纳,获得10
32秒前
冷静的胜完成签到,获得积分10
33秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122926
求助须知:如何正确求助?哪些是违规求助? 2773264
关于积分的说明 7717277
捐赠科研通 2428810
什么是DOI,文献DOI怎么找? 1290047
科研通“疑难数据库(出版商)”最低求助积分说明 621693
版权声明 600203