How Legal Knowledge Graph Can Help Predict Charges for Legal Text

计算机科学 钥匙(锁) 图形 领域知识 人工智能 理论计算机科学 数据挖掘 情报检索 自然语言处理 计算机安全
作者
Shang Gao,Rina Sa,Yanling Li,Fengpei Ge,Haiqing Yu,Sukun Wang,Zhongyi Miao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 408-420 被引量:1
标识
DOI:10.1007/978-981-99-8076-5_30
摘要

The existing methods for predicting Easily Confused Charges (ECC) primarily rely on factual descriptions from legal cases. However, these approaches overlook some key information hidden in these descriptions, resulting in an inability to accurately differentiate between ECC. Legal domain knowledge graphs can showcase personal information and criminal processes in cases, but they primarily focus on entities in cases of insolation while ignoring the logical relationships between these entities. Different relationships often lead to distinct charges. To address these problems, this paper proposes a charge prediction model that integrates a Criminal Behavior Knowledge Graph (CBKG), called Charge Prediction Knowledge Graph (CP-KG). Firstly, we defined a diverse range of legal entities and relationships based on the characteristics of ECC. We conducted fine-grained annotation on key elements and logical relationships in the factual descriptions. Subsequently, we matched the descriptions with the CBKG to extract the key elements, which were then encoded by Text Convolutional Neural Network (TextCNN). Additionally, we extracted case subgraphs containing sequential behaviors from the CBKG based on the factual descriptions and encoded them using a Graph Attention Network (GAT). Finally, we concatenated these representations of key elements, case subgraphs, and factual descriptions, collectively used for predicting the charges of the defendant. To evaluate the CP-KG, we conducted experiments on two charge prediction datasets consisting of real legal cases. The experimental results demonstrate that the CP-KG achieves scores of 99.10% and 90.23% in the Macro-F1 respectively. Compared to the baseline methods, the CP-KG shows significant improvements with 25.79% and 13.82% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞秋完成签到,获得积分10
2秒前
3秒前
Huang完成签到 ,获得积分0
4秒前
4秒前
5秒前
含蓄文博完成签到 ,获得积分10
6秒前
orixero应助liiiiiii采纳,获得10
6秒前
8秒前
8秒前
9秒前
生动的采枫完成签到 ,获得积分10
11秒前
orixero应助aaaa采纳,获得10
11秒前
12秒前
某某某发布了新的文献求助10
13秒前
Zhupegnju发布了新的文献求助10
13秒前
肉卷发布了新的文献求助10
14秒前
过柱菜鸟发布了新的文献求助10
15秒前
momomo应助灰底爆米花采纳,获得10
15秒前
lcj完成签到,获得积分10
18秒前
科研通AI2S应助幸运鱼采纳,获得10
18秒前
天天快乐应助皮崇知采纳,获得10
18秒前
ShengzhangLiu发布了新的文献求助10
19秒前
化学胖子完成签到,获得积分10
19秒前
典雅的丹寒关注了科研通微信公众号
21秒前
艾莎莎5114完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
皮崇知完成签到,获得积分10
23秒前
orixero应助大胆的时光采纳,获得10
23秒前
23秒前
23秒前
wang发布了新的文献求助30
25秒前
小唐尼发布了新的文献求助10
27秒前
Rondab应助ZZQ采纳,获得10
27秒前
Ode完成签到,获得积分10
28秒前
皮崇知发布了新的文献求助10
28秒前
zy3637完成签到 ,获得积分10
28秒前
blue发布了新的文献求助10
29秒前
小坤同学完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425