能量收集
电气工程
声学
功率(物理)
联轴节(管道)
磁场
振动
工程类
物理
机械工程
量子力学
作者
Jianglei Chang,Xiangyu Gao,Wei Peng,Zhonghui Yu,Zhaoqiang Chu,Junqi Gao,Ming Liu,Penghong Ci,Shuxiang Dong
标识
DOI:10.1016/j.device.2023.100021
摘要
Energy harvesting is crucial for sustainable micropower sources, but conventional energy harvesters have limited power-generation capabilities. To address this, we introduce a novel dragonfly-wing-like energy harvester with four wing-like magnetoelectric laminated cantilever beams operating in two intercrossed antisymmetric bending modes. This design enhances magneto-mechano-electric coupling, enabling efficient harvesting of stray magnetic field and weak vibrations. Under a weak alternating current (AC) magnetic field (HAC = 3 Oe, f = 50 Hz), our portable dragonfly-wing-like energy harvester (DWL-EH) achieves a record-high output power of 25.89 mWavg and also effectively harvests low-level vibration energy with the highest output power density by far. Remarkably, even under an HAC of 1 Oe, the DWL-EH generates sufficient power to illuminate hundreds of light-emitting diodes (LEDs). Furthermore, the harvested energy powers a multi-sensor Internet of Things system for real-time environmental monitoring. This work highlights the effectiveness of incorporating natural inspirations into piezoelectric and magnetoelectric energy harvesters through bionic movement pattern emulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI