Data-driven modeling of noise time series with convolutional generative adversarial networks ∗

计算机科学 噪音(视频) 系列(地层学) 时间序列 离群值 算法 人工智能 机器学习 图像(数学) 古生物学 生物
作者
Adam Wunderlich,Jack Sklar
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (3): 035023-035023 被引量:4
标识
DOI:10.1088/2632-2153/acee44
摘要

Abstract Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing and data analysis tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we assess two general-purpose GANs for time series that are based on the popular deep convolutional GAN architecture, a direct time-series model and an image-based model that uses a short-time Fourier transform data representation. The GAN models are trained and quantitatively evaluated using distributions of simulated noise time series with known ground-truth parameters. Target time series distributions include a broad range of noise types commonly encountered in physical measurements, electronics, and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g. impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助QIQI采纳,获得10
刚刚
无名小卒每文完成签到,获得积分10
刚刚
邢丹丹发布了新的文献求助10
刚刚
1秒前
2秒前
蓝天发布了新的文献求助10
3秒前
Akim应助春花采纳,获得10
3秒前
youy发布了新的文献求助20
3秒前
4秒前
多情易蓉完成签到,获得积分10
4秒前
4秒前
微光完成签到,获得积分10
4秒前
毛毛完成签到,获得积分10
5秒前
5秒前
大大怪发布了新的文献求助20
5秒前
6秒前
6秒前
斯文败类应助欣慰雪巧采纳,获得10
7秒前
梅菜菜完成签到,获得积分10
7秒前
9秒前
Hello应助zyx采纳,获得10
10秒前
10秒前
学术小白完成签到,获得积分10
10秒前
10秒前
梅菜菜发布了新的文献求助10
10秒前
舒克发布了新的文献求助10
11秒前
Rgly完成签到 ,获得积分10
11秒前
负责中恶完成签到,获得积分10
12秒前
chihiro完成签到,获得积分20
12秒前
墨琼琼应助科研通管家采纳,获得10
12秒前
墨琼琼应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
田様应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933