Data-driven modeling of noise time series with convolutional generative adversarial networks ∗

计算机科学 噪音(视频) 系列(地层学) 时间序列 离群值 算法 人工智能 机器学习 图像(数学) 生物 古生物学
作者
Adam Wunderlich,Jack Sklar
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (3): 035023-035023 被引量:4
标识
DOI:10.1088/2632-2153/acee44
摘要

Abstract Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing and data analysis tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we assess two general-purpose GANs for time series that are based on the popular deep convolutional GAN architecture, a direct time-series model and an image-based model that uses a short-time Fourier transform data representation. The GAN models are trained and quantitatively evaluated using distributions of simulated noise time series with known ground-truth parameters. Target time series distributions include a broad range of noise types commonly encountered in physical measurements, electronics, and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g. impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助celly采纳,获得30
刚刚
wj完成签到,获得积分20
1秒前
武愿完成签到,获得积分10
1秒前
1秒前
郭京京完成签到 ,获得积分10
1秒前
口口方发布了新的文献求助10
3秒前
晶晶发布了新的文献求助10
4秒前
hhh完成签到 ,获得积分10
4秒前
李健应助lejunia采纳,获得10
6秒前
xpeng发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助150
7秒前
10秒前
Lucas应助朱冰蓝采纳,获得10
10秒前
13秒前
南门发布了新的文献求助10
13秒前
chang111发布了新的文献求助30
15秒前
陈鑫雨完成签到,获得积分10
15秒前
15秒前
17秒前
大象完成签到 ,获得积分10
18秒前
Hello应助wj采纳,获得10
18秒前
小谢同学发布了新的文献求助10
18秒前
babyshelling完成签到,获得积分20
19秒前
完美世界应助xpeng采纳,获得10
19秒前
19秒前
20秒前
充电宝应助飞飞猪采纳,获得10
21秒前
21秒前
Patronus发布了新的文献求助10
23秒前
24秒前
怕黑宝马完成签到,获得积分10
24秒前
大象关注了科研通微信公众号
24秒前
JamesPei应助朱冰蓝采纳,获得10
25秒前
完美世界应助大力的含卉采纳,获得10
25秒前
我再也不闹着去叔叔阿姨家吃饭了完成签到 ,获得积分10
25秒前
26秒前
27秒前
量子星尘发布了新的文献求助150
27秒前
babyshelling关注了科研通微信公众号
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406