Data-driven modeling of noise time series with convolutional generative adversarial networks ∗

计算机科学 噪音(视频) 系列(地层学) 时间序列 离群值 算法 人工智能 机器学习 图像(数学) 古生物学 生物
作者
Adam Wunderlich,Jack Sklar
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (3): 035023-035023 被引量:4
标识
DOI:10.1088/2632-2153/acee44
摘要

Abstract Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing and data analysis tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we assess two general-purpose GANs for time series that are based on the popular deep convolutional GAN architecture, a direct time-series model and an image-based model that uses a short-time Fourier transform data representation. The GAN models are trained and quantitatively evaluated using distributions of simulated noise time series with known ground-truth parameters. Target time series distributions include a broad range of noise types commonly encountered in physical measurements, electronics, and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g. impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyh发布了新的文献求助10
刚刚
刚刚
十六夜彦发布了新的文献求助10
1秒前
1秒前
CNSgo发布了新的文献求助10
1秒前
星辰大海应助aaaaaa利路亚采纳,获得10
2秒前
2秒前
连糜发布了新的文献求助20
3秒前
朽木白哉完成签到 ,获得积分10
4秒前
wxy发布了新的文献求助10
4秒前
十六夜彦完成签到,获得积分10
5秒前
无奈的代珊完成签到 ,获得积分10
5秒前
无花果应助徐栀采纳,获得10
5秒前
精明外套发布了新的文献求助30
6秒前
YoungLee发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
浮游应助周新哲采纳,获得10
10秒前
连糜完成签到,获得积分10
10秒前
Lucas应助昏睡的绿海采纳,获得10
11秒前
13秒前
13秒前
L-g-b发布了新的文献求助10
14秒前
15秒前
16秒前
小二郎应助不展采纳,获得10
16秒前
YoungLee完成签到,获得积分10
17秒前
nnnnn完成签到,获得积分10
18秒前
核桃应助科研通管家采纳,获得10
18秒前
liyuxuan发布了新的文献求助10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
Akim应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得30
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560