Highly accurate and robust protein sequence design with CarbonDesign

蛋白质设计 计算机科学 序列(生物学) 杠杆(统计) 马尔可夫链 蛋白质测序 人工智能 蛋白质结构预测 机器学习 蛋白质结构 肽序列 生物 遗传学 生物化学 基因
作者
Mingrong Ren,Chungong Yu,Dongbo Bu,Haicang Zhang
标识
DOI:10.1101/2023.08.07.552204
摘要

Abstract Protein sequence design, the inverse problem of protein structure prediction, plays a crucial role in protein engineering. Although recent deep learning-based methods have shown promising advancements, achieving accurate and robust protein sequence design remains an ongoing challenge. Here, we present CarbonDesign, a new approach that draws inspiration from successful ingredients of AlphaFold for protein structure prediction and makes significant and novel developments tailored specifically for protein sequence design. At its core, CarbonDesign explores Inverseformer, a novel network architecture adapted from AlphaFold’s Evoformer, to learn representations from backbone structures and an amortized Markov Random Fields model for sequence decoding. Moreover, we incorporate other essential AlphaFold concepts into CarbonDesign: an end-to-end network recycling technique to leverage evolutionary constraints in protein language models and a multi-task learning technique to generate side chain structures corresponding to the designed sequences. Through rigorous evaluations on independent testing data sets, including the CAMEO and recent CASP15 data sets, as well as the predicted structures from AlphaFold, we show that CarbonDesign outperforms other published methods, achieving high accuracy in sequence generation. Moreover, it exhibits superior performance on de novo backbone structures obtained from recent diffusion generative models such as RFdiffusion and FrameDiff, highlighting its potential for enhancing de novo protein design. Notably, CarbonDesign also supports zero-shot prediction of the functional effects of sequence variants, indicating its potential application in directed evolution-based design. In summary, our results illustrate CarbonDesign’s accurate and robust performance in protein sequence design, making it a promising tool for applications in bioengineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗弘文发布了新的文献求助10
刚刚
甜甜甜完成签到,获得积分10
刚刚
1秒前
3秒前
LHL完成签到,获得积分10
3秒前
什么东西这么好看完成签到,获得积分10
4秒前
十大完成签到 ,获得积分10
5秒前
研友_LpvQlZ完成签到,获得积分10
5秒前
思源应助nana湘采纳,获得10
5秒前
黄瓜橙橙发布了新的文献求助10
6秒前
专注笑珊完成签到,获得积分10
6秒前
小彭陪小崔读个研完成签到 ,获得积分10
6秒前
Hou完成签到,获得积分10
6秒前
YihanChen完成签到 ,获得积分10
7秒前
12完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
8秒前
jiajia发布了新的文献求助10
9秒前
凡仔完成签到,获得积分10
9秒前
vic完成签到,获得积分10
9秒前
LuoYR@SZU完成签到,获得积分10
10秒前
10秒前
JinGN完成签到,获得积分0
10秒前
大眼睛的草莓完成签到,获得积分10
11秒前
12秒前
12秒前
丑鱼丑鱼我爱你完成签到 ,获得积分10
12秒前
Chloe完成签到,获得积分10
14秒前
14秒前
瑾辰发布了新的文献求助10
14秒前
月月完成签到,获得积分10
14秒前
无限毛豆完成签到 ,获得积分10
15秒前
16秒前
陈宗琴完成签到,获得积分10
17秒前
酷酷的匪发布了新的文献求助10
17秒前
zy完成签到 ,获得积分10
18秒前
两天浇一次水完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
情怀应助科研通管家采纳,获得30
20秒前
xzy998应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027