Highly accurate and robust protein sequence design with CarbonDesign

蛋白质设计 计算机科学 序列(生物学) 杠杆(统计) 马尔可夫链 蛋白质测序 人工智能 蛋白质结构预测 机器学习 蛋白质结构 肽序列 生物 生物化学 遗传学 基因
作者
Mingrong Ren,Chungong Yu,Dongbo Bu,Haicang Zhang
标识
DOI:10.1101/2023.08.07.552204
摘要

Abstract Protein sequence design, the inverse problem of protein structure prediction, plays a crucial role in protein engineering. Although recent deep learning-based methods have shown promising advancements, achieving accurate and robust protein sequence design remains an ongoing challenge. Here, we present CarbonDesign, a new approach that draws inspiration from successful ingredients of AlphaFold for protein structure prediction and makes significant and novel developments tailored specifically for protein sequence design. At its core, CarbonDesign explores Inverseformer, a novel network architecture adapted from AlphaFold’s Evoformer, to learn representations from backbone structures and an amortized Markov Random Fields model for sequence decoding. Moreover, we incorporate other essential AlphaFold concepts into CarbonDesign: an end-to-end network recycling technique to leverage evolutionary constraints in protein language models and a multi-task learning technique to generate side chain structures corresponding to the designed sequences. Through rigorous evaluations on independent testing data sets, including the CAMEO and recent CASP15 data sets, as well as the predicted structures from AlphaFold, we show that CarbonDesign outperforms other published methods, achieving high accuracy in sequence generation. Moreover, it exhibits superior performance on de novo backbone structures obtained from recent diffusion generative models such as RFdiffusion and FrameDiff, highlighting its potential for enhancing de novo protein design. Notably, CarbonDesign also supports zero-shot prediction of the functional effects of sequence variants, indicating its potential application in directed evolution-based design. In summary, our results illustrate CarbonDesign’s accurate and robust performance in protein sequence design, making it a promising tool for applications in bioengineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phantom发布了新的文献求助10
刚刚
far_away完成签到 ,获得积分10
1秒前
1秒前
silence63完成签到 ,获得积分10
2秒前
2秒前
经竺发布了新的文献求助10
2秒前
Jasper应助天真的莺采纳,获得10
2秒前
大白天的飙摩的完成签到,获得积分10
3秒前
3秒前
852应助南音采纳,获得10
3秒前
Sakura完成签到,获得积分10
4秒前
WCX完成签到,获得积分10
4秒前
庞伟泽完成签到,获得积分10
4秒前
sxiao18应助小王采纳,获得10
4秒前
龙辉发布了新的文献求助10
5秒前
赘婿应助Shyne采纳,获得10
5秒前
mushanes完成签到 ,获得积分10
7秒前
感动清炎完成签到,获得积分10
7秒前
7秒前
大师发布了新的文献求助10
7秒前
华仔应助don1990采纳,获得10
7秒前
7秒前
忧郁紫翠完成签到,获得积分10
8秒前
far_away关注了科研通微信公众号
8秒前
le完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
leserein完成签到,获得积分10
10秒前
10秒前
MoonWonJ完成签到,获得积分10
11秒前
apiaji完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
13秒前
科研小豆完成签到 ,获得积分20
13秒前
13秒前
天宇完成签到,获得积分10
13秒前
龙辉完成签到,获得积分20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567