Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary

置信区间 危险系数 医学 内科学 癌症 肿瘤科
作者
Intae Moon,Jaclyn LoPiccolo,Sylvan C. Baca,Lynette M. Sholl,Kenneth L. Kehl,Michael J. Hassett,David Liu,Deborah Schrag,Alexander Gusev
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (8): 2057-2067 被引量:33
标识
DOI:10.1038/s41591-023-02482-6
摘要

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3–5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ( $$\ge 0.9$$ ) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210–0.570; P = $$2.32\times {10}^{-5}$$ ). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP. A machine-learning classifier predicts the origin of cancer of unknown primary based on electronic health records and next-generation sequencing data, showing that patients treated accordingly to model predictions had significantly better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到 ,获得积分10
1秒前
zhuboujs完成签到,获得积分10
1秒前
cjc完成签到,获得积分10
2秒前
3秒前
威武怀蕊完成签到,获得积分10
4秒前
无花果应助Diamond采纳,获得10
6秒前
6秒前
顾矜应助快乐一江采纳,获得10
6秒前
科研通AI2S应助123采纳,获得10
6秒前
8秒前
朴素的梦岚完成签到,获得积分10
8秒前
水木生完成签到 ,获得积分10
9秒前
幸福发布了新的文献求助10
10秒前
jiajia完成签到,获得积分10
11秒前
跳跃雯发布了新的文献求助10
11秒前
旺旺大礼包完成签到,获得积分10
12秒前
8R60d8应助紧张的如南采纳,获得20
14秒前
Hh发布了新的文献求助10
14秒前
14秒前
15秒前
研友_Ze2V48完成签到,获得积分10
18秒前
WonderC完成签到 ,获得积分10
19秒前
科研通AI2S应助真实的哲瀚采纳,获得10
20秒前
21秒前
21秒前
22秒前
ShangXuanyue完成签到,获得积分20
23秒前
坨坨西州完成签到,获得积分10
23秒前
23秒前
欢呼的水香完成签到,获得积分10
24秒前
欣喜的真完成签到,获得积分10
25秒前
科目三应助WXJ采纳,获得10
27秒前
27秒前
zzz发布了新的文献求助10
27秒前
Jerry发布了新的文献求助10
28秒前
陈陈完成签到 ,获得积分10
28秒前
pupu发布了新的文献求助20
29秒前
成就小懒猪完成签到 ,获得积分10
30秒前
惜风发布了新的文献求助10
30秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244