Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary

置信区间 危险系数 医学 内科学 癌症 肿瘤科 分类器(UML) 人工智能 计算机科学
作者
Intae Moon,Jaclyn LoPiccolo,Sylvan C. Baca,Lynette M. Sholl,Kenneth L. Kehl,Michael J. Hassett,David Liu,Deborah Schrag,Alexander Gusev
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (8): 2057-2067 被引量:48
标识
DOI:10.1038/s41591-023-02482-6
摘要

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3–5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ( $$\ge 0.9$$ ) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210–0.570; P = $$2.32\times {10}^{-5}$$ ). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP. A machine-learning classifier predicts the origin of cancer of unknown primary based on electronic health records and next-generation sequencing data, showing that patients treated accordingly to model predictions had significantly better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思思发布了新的文献求助10
刚刚
望京望京发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
Wuxg完成签到,获得积分10
3秒前
夏天很凉快完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
领导范儿应助老实乌冬面采纳,获得10
4秒前
4秒前
幽默翠桃发布了新的文献求助10
5秒前
5秒前
遇上就这样吧应助feng采纳,获得10
5秒前
6秒前
研友_844eR8完成签到,获得积分0
6秒前
6秒前
CharlotteBlue发布了新的文献求助50
7秒前
fkhuny完成签到,获得积分10
7秒前
别烦完成签到 ,获得积分10
8秒前
8秒前
8秒前
TTTHANKS完成签到 ,获得积分10
8秒前
锐哥发布了新的文献求助10
9秒前
9秒前
10秒前
高高海安发布了新的文献求助10
10秒前
10秒前
bobochi发布了新的文献求助10
10秒前
10秒前
zys2001mezy应助2hi采纳,获得20
10秒前
哒哒发布了新的文献求助10
11秒前
Timezzz发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
大乐发布了新的文献求助10
13秒前
Mr发布了新的文献求助10
13秒前
董煊发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203