工作流程
分子机器
计算机科学
量子
吞吐量
领域(数学)
量子化学
高通量筛选
纳米技术
量子机器学习
生物信息学
系统工程
人工智能
量子计算机
分子
化学
材料科学
物理
工程类
电信
数据库
生物化学
数学
量子力学
纯数学
无线
基因
有机化学
作者
Nicholas Casetti,Javier Emilio Alfonso Ramos,Connor W. Coley,Thijs Stuyver
标识
DOI:10.1002/chem.202301957
摘要
Molecular quantum mechanical modeling, accelerated by machine learning, has opened the door to high-throughput screening campaigns of complex properties, such as the activation energies of chemical reactions and absorption/emission spectra of materials and molecules; in silico. Here, we present an overview of the main principles, concepts, and design considerations involved in such hybrid computational quantum chemistry/machine learning screening workflows, with a special emphasis on some recent examples of their successful application. We end with a brief outlook of further advances that will benefit the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI