Prediction of circRNA-Binding Protein Site Based on Hybrid Neural Networks and Recurrent Forests Method

计算机科学 循环神经网络 人工智能 环状RNA 卷积神经网络 核糖核酸 非编码RNA 计算生物学 人工神经网络 RNA结合蛋白 模式识别(心理学) 生物 基因 遗传学
作者
Zewen Wang,Qi Meng,Qiang Zhang,Jiahao Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 497-508
标识
DOI:10.1007/978-981-99-4749-2_42
摘要

Circular RNAs (circRNAs) play an important role in the regulation of autoimmune diseases by binding to RNA–binding proteins (RBP). Therefore studying the binding sites of RBP on cyclic RNA is crucial for our understanding of the interactions between RBP and its RNA targets. In this paper, we propose the classification method CNBM-RRF based on hybrid neural networks and recurrent forests method for identifying circRNA-RBP interaction sites. In the CNBM-DRAF method, we use four coding methods to extract four features of the cyclic RNA sequences. The features include pseudo amino acid features, pseudo dipeptide features, pseudo secondary structure features, and pseudo word vector features. Then we feed the features into the hybrid neural network to obtain the common features of the cyclic RNA sequences. The hybrid neural network includes the convolutional neural network (CNN) and the bi-directional long short-term memory network (BiLSTM). In addition we use weighted generalized canonical correlation analysis (WGCCA) to extract the common features of the four features. Finally we input common features into recurrent forests for prediction of RBP binding sites on circular RNAs. The proposed recurrent forests method is inspired by Long Short Term Memory (LSTM). We test it on 10 circRNA datasets and compare it with 7 existing methods. The experimental results show that the prediction performance of CNBM-RRF method is improved compared with that of the existing 7 methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助LL采纳,获得10
1秒前
1秒前
1秒前
17完成签到,获得积分10
2秒前
冷酷愚志完成签到,获得积分10
3秒前
北媛发布了新的文献求助10
4秒前
4秒前
Dr.feng发布了新的文献求助10
4秒前
4秒前
lcx完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
乾清宫喝奶茶完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
李涵完成签到,获得积分10
9秒前
欣欣完成签到,获得积分10
10秒前
傲娇林发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
13秒前
研友_Z729Mn发布了新的文献求助10
14秒前
独特跳跳糖完成签到 ,获得积分10
15秒前
15秒前
hyl-tcm完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
LL发布了新的文献求助10
18秒前
xavier发布了新的文献求助10
18秒前
18秒前
孙意冉发布了新的文献求助10
19秒前
20秒前
hd发布了新的文献求助10
21秒前
22秒前
kakainho完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474