Prediction of circRNA-Binding Protein Site Based on Hybrid Neural Networks and Recurrent Forests Method

计算机科学 循环神经网络 人工智能 环状RNA 卷积神经网络 核糖核酸 非编码RNA 计算生物学 人工神经网络 RNA结合蛋白 模式识别(心理学) 生物 基因 遗传学
作者
Zewen Wang,Qi Meng,Qiang Zhang,Jiahao Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 497-508
标识
DOI:10.1007/978-981-99-4749-2_42
摘要

Circular RNAs (circRNAs) play an important role in the regulation of autoimmune diseases by binding to RNA–binding proteins (RBP). Therefore studying the binding sites of RBP on cyclic RNA is crucial for our understanding of the interactions between RBP and its RNA targets. In this paper, we propose the classification method CNBM-RRF based on hybrid neural networks and recurrent forests method for identifying circRNA-RBP interaction sites. In the CNBM-DRAF method, we use four coding methods to extract four features of the cyclic RNA sequences. The features include pseudo amino acid features, pseudo dipeptide features, pseudo secondary structure features, and pseudo word vector features. Then we feed the features into the hybrid neural network to obtain the common features of the cyclic RNA sequences. The hybrid neural network includes the convolutional neural network (CNN) and the bi-directional long short-term memory network (BiLSTM). In addition we use weighted generalized canonical correlation analysis (WGCCA) to extract the common features of the four features. Finally we input common features into recurrent forests for prediction of RBP binding sites on circular RNAs. The proposed recurrent forests method is inspired by Long Short Term Memory (LSTM). We test it on 10 circRNA datasets and compare it with 7 existing methods. The experimental results show that the prediction performance of CNBM-RRF method is improved compared with that of the existing 7 methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许子健发布了新的文献求助10
刚刚
1秒前
核桃发布了新的文献求助10
1秒前
清爽笑翠完成签到 ,获得积分10
1秒前
56jhjl完成签到,获得积分10
1秒前
大旭完成签到 ,获得积分10
2秒前
2秒前
opbillows发布了新的文献求助10
3秒前
Yolo发布了新的文献求助10
6秒前
6秒前
天天快乐应助健忘的若风采纳,获得10
7秒前
SYLH应助jiulin采纳,获得10
8秒前
8秒前
彩色的无声完成签到,获得积分20
9秒前
TTT完成签到,获得积分10
9秒前
clever关注了科研通微信公众号
10秒前
许子健发布了新的文献求助10
10秒前
11秒前
墨墨完成签到,获得积分10
13秒前
14秒前
15秒前
善学以致用应助咿咿呀呀采纳,获得30
15秒前
汉堡包应助Yolo采纳,获得10
15秒前
15秒前
念姬发布了新的文献求助10
18秒前
刘敏小七完成签到,获得积分10
18秒前
18秒前
慕青应助T拐拐采纳,获得10
19秒前
20秒前
20秒前
饺子完成签到,获得积分10
20秒前
Gao发布了新的文献求助10
21秒前
核桃发布了新的文献求助10
24秒前
像个小蛤蟆完成签到 ,获得积分10
25秒前
orixero应助博修采纳,获得10
25秒前
26秒前
咿咿呀呀发布了新的文献求助30
27秒前
Macaco完成签到,获得积分10
28秒前
qweqwe完成签到 ,获得积分10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388