Research on real-time detection method of rail corrugation based on improved ShuffleNet V2

计算机科学 卷积神经网络 分割 人工智能 计算机视觉 人工神经网络 Canny边缘检测器 激活函数 图像分割 边缘检测 模式识别(心理学) 模拟 图像处理 图像(数学)
作者
Hongjuan Yang,Jiaxin Liu,Guiming Mei,Dongsheng Yang,Xingqiao Deng,Chao Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106825-106825 被引量:31
标识
DOI:10.1016/j.engappai.2023.106825
摘要

Rail corrugation is a common wear mechanism of high-speed railways and subways, which can cause derailment and running noise. However, rail corrugation only has slight texture change on the rail surface, so it is difficult to detect accurately by traditional detection methods. In this paper, a real-time detection method of rail corrugation based on machine vision and a convolutional neural network is proposed, which effectively improves the accuracy and efficiency of rail corrugation detection. Combined with the gray features of each part of the image, a rail surface segmentation method based on the gray maximum value of the sliding window is also proposed. Moreover, the obtained rail surface image is clearer and the feature information of the rail surface can be completely retained, compared with the adaptive threshold segmentation and edge detection segmentation. ShuffleNet V2, a lightweight convolutional neural network, was selected as the corrugation detection model. The squeeze-and-excitation module was integrated into its basic unit to improve its channel attention, and the activation function was re-selected to make the detection have better real-time performance and accuracy. Through experimental verification, the average detection time of a single image of the improved model is 4.01ms, and the detection accuracy is 2.78% higher than that of the unimproved ShuffleNet V2. The research results will be beneficial to the development of the intelligent real-time detection of rail corrugation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助玩命的靖雁采纳,获得10
刚刚
probiotics完成签到,获得积分10
刚刚
cccccckp完成签到,获得积分20
刚刚
qy发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
张杰列夫完成签到 ,获得积分10
2秒前
有梦想的人不睡觉完成签到,获得积分10
3秒前
陈瑞完成签到,获得积分10
3秒前
zou发布了新的文献求助10
3秒前
4秒前
WenyHe发布了新的文献求助10
4秒前
偷懒会被吃掉的完成签到 ,获得积分10
4秒前
风中琦完成签到 ,获得积分10
4秒前
4秒前
5秒前
顾建瑜完成签到,获得积分10
5秒前
小八统治世界完成签到 ,获得积分10
5秒前
5秒前
爱睡觉的杨先生完成签到 ,获得积分10
5秒前
JamesPei应助木木采纳,获得10
6秒前
渠建武完成签到 ,获得积分10
6秒前
雨香完成签到,获得积分10
6秒前
lsl应助一只否酱采纳,获得20
6秒前
橘灯完成签到,获得积分10
7秒前
啊哈完成签到,获得积分10
7秒前
英俊的铭应助lmc采纳,获得10
7秒前
彼得潘同学完成签到,获得积分10
8秒前
lijing123发布了新的文献求助10
8秒前
Akim应助zoe采纳,获得10
8秒前
mrlow完成签到,获得积分10
8秒前
WZ完成签到,获得积分10
8秒前
8秒前
Jasper应助辛勤静珊采纳,获得10
9秒前
兴奋的问旋完成签到,获得积分10
9秒前
FD完成签到,获得积分10
9秒前
Sun完成签到,获得积分10
9秒前
9秒前
好好好发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570