Research on real-time detection method of rail corrugation based on improved ShuffleNet V2

计算机科学 卷积神经网络 分割 人工智能 计算机视觉 人工神经网络 Canny边缘检测器 激活函数 图像分割 边缘检测 模式识别(心理学) 模拟 图像处理 图像(数学)
作者
Hongjuan Yang,Jiaxin Liu,Guiming Mei,Dongsheng Yang,Xingqiao Deng,Chao Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106825-106825 被引量:31
标识
DOI:10.1016/j.engappai.2023.106825
摘要

Rail corrugation is a common wear mechanism of high-speed railways and subways, which can cause derailment and running noise. However, rail corrugation only has slight texture change on the rail surface, so it is difficult to detect accurately by traditional detection methods. In this paper, a real-time detection method of rail corrugation based on machine vision and a convolutional neural network is proposed, which effectively improves the accuracy and efficiency of rail corrugation detection. Combined with the gray features of each part of the image, a rail surface segmentation method based on the gray maximum value of the sliding window is also proposed. Moreover, the obtained rail surface image is clearer and the feature information of the rail surface can be completely retained, compared with the adaptive threshold segmentation and edge detection segmentation. ShuffleNet V2, a lightweight convolutional neural network, was selected as the corrugation detection model. The squeeze-and-excitation module was integrated into its basic unit to improve its channel attention, and the activation function was re-selected to make the detection have better real-time performance and accuracy. Through experimental verification, the average detection time of a single image of the improved model is 4.01ms, and the detection accuracy is 2.78% higher than that of the unimproved ShuffleNet V2. The research results will be beneficial to the development of the intelligent real-time detection of rail corrugation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天123完成签到 ,获得积分10
2秒前
fgpa发布了新的文献求助10
2秒前
3秒前
yalin完成签到,获得积分10
3秒前
btb完成签到,获得积分10
4秒前
小王发布了新的文献求助100
5秒前
acuis发布了新的文献求助10
5秒前
传奇3应助Ryouji采纳,获得10
6秒前
6秒前
Rosemary发布了新的文献求助10
6秒前
华仔应助帝国之花采纳,获得50
6秒前
乐乐应助尔尔采纳,获得30
6秒前
等月光发布了新的文献求助10
7秒前
QianQianONE完成签到,获得积分10
7秒前
8秒前
kathleen完成签到,获得积分10
8秒前
哦吼完成签到,获得积分10
9秒前
9秒前
一科研土豆完成签到,获得积分10
9秒前
JamesPei应助小王采纳,获得10
10秒前
wyao发布了新的文献求助30
11秒前
田様应助xuleiman采纳,获得10
12秒前
13秒前
英俊的铭应助YZQ采纳,获得20
15秒前
15秒前
科研通AI6.1应助JunHan采纳,获得10
16秒前
wczkzzyfxh完成签到,获得积分10
16秒前
Karry发布了新的文献求助10
16秒前
icecreammm发布了新的文献求助10
18秒前
19秒前
19秒前
尔尔发布了新的文献求助30
20秒前
有趣的银发布了新的文献求助100
20秒前
量子星尘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
彭于晏应助饭饭采纳,获得10
22秒前
汉堡包应助俭朴的月亮采纳,获得10
23秒前
xuleiman发布了新的文献求助10
24秒前
FoxLY完成签到,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745368
求助须知:如何正确求助?哪些是违规求助? 5425346
关于积分的说明 15352788
捐赠科研通 4885424
什么是DOI,文献DOI怎么找? 2626604
邀请新用户注册赠送积分活动 1575254
关于科研通互助平台的介绍 1531987