Research on real-time detection method of rail corrugation based on improved ShuffleNet V2

计算机科学 卷积神经网络 分割 人工智能 计算机视觉 人工神经网络 Canny边缘检测器 激活函数 图像分割 边缘检测 模式识别(心理学) 模拟 图像处理 图像(数学)
作者
Hongjuan Yang,Jiaxin Liu,Guiming Mei,Dongsheng Yang,Xingqiao Deng,Chao Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106825-106825 被引量:31
标识
DOI:10.1016/j.engappai.2023.106825
摘要

Rail corrugation is a common wear mechanism of high-speed railways and subways, which can cause derailment and running noise. However, rail corrugation only has slight texture change on the rail surface, so it is difficult to detect accurately by traditional detection methods. In this paper, a real-time detection method of rail corrugation based on machine vision and a convolutional neural network is proposed, which effectively improves the accuracy and efficiency of rail corrugation detection. Combined with the gray features of each part of the image, a rail surface segmentation method based on the gray maximum value of the sliding window is also proposed. Moreover, the obtained rail surface image is clearer and the feature information of the rail surface can be completely retained, compared with the adaptive threshold segmentation and edge detection segmentation. ShuffleNet V2, a lightweight convolutional neural network, was selected as the corrugation detection model. The squeeze-and-excitation module was integrated into its basic unit to improve its channel attention, and the activation function was re-selected to make the detection have better real-time performance and accuracy. Through experimental verification, the average detection time of a single image of the improved model is 4.01ms, and the detection accuracy is 2.78% higher than that of the unimproved ShuffleNet V2. The research results will be beneficial to the development of the intelligent real-time detection of rail corrugation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alien52发布了新的文献求助10
刚刚
萌宝发布了新的文献求助10
刚刚
尼古拉耶维奇完成签到,获得积分10
刚刚
华仔应助_Dearlxy采纳,获得10
刚刚
海棠先雪完成签到,获得积分10
刚刚
史迪奇大王完成签到,获得积分10
刚刚
cc完成签到,获得积分10
1秒前
Mende完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
兴十一发布了新的文献求助10
2秒前
魔幻的鹏笑完成签到,获得积分10
2秒前
vc完成签到,获得积分20
2秒前
纳古菌完成签到,获得积分10
2秒前
小勇仔完成签到,获得积分10
3秒前
肖坤完成签到,获得积分10
3秒前
guanguan发布了新的文献求助10
3秒前
Peggy69发布了新的文献求助10
3秒前
theverve完成签到,获得积分10
3秒前
3秒前
4秒前
今后应助ginkgoleaf采纳,获得10
4秒前
wq完成签到,获得积分10
4秒前
allglitters完成签到,获得积分10
4秒前
4秒前
4秒前
千尺焰完成签到,获得积分10
4秒前
又该看文献了完成签到 ,获得积分10
5秒前
情怀应助温柔体贴阿尔法采纳,获得10
5秒前
追寻月饼发布了新的文献求助10
5秒前
风暴之灵关注了科研通微信公众号
5秒前
lz123发布了新的文献求助10
5秒前
5秒前
Yang完成签到,获得积分10
5秒前
满意静丹完成签到,获得积分10
5秒前
CipherSage应助细腻含羞草采纳,获得10
5秒前
wjx关闭了wjx文献求助
6秒前
teamwang完成签到,获得积分10
6秒前
dou完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006