Research on real-time detection method of rail corrugation based on improved ShuffleNet V2

计算机科学 卷积神经网络 分割 人工智能 计算机视觉 人工神经网络 Canny边缘检测器 激活函数 图像分割 边缘检测 模式识别(心理学) 模拟 图像处理 图像(数学)
作者
Hongjuan Yang,Jiaxin Liu,Guiming Mei,Dongsheng Yang,Xingqiao Deng,Chao Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106825-106825 被引量:17
标识
DOI:10.1016/j.engappai.2023.106825
摘要

Rail corrugation is a common wear mechanism of high-speed railways and subways, which can cause derailment and running noise. However, rail corrugation only has slight texture change on the rail surface, so it is difficult to detect accurately by traditional detection methods. In this paper, a real-time detection method of rail corrugation based on machine vision and a convolutional neural network is proposed, which effectively improves the accuracy and efficiency of rail corrugation detection. Combined with the gray features of each part of the image, a rail surface segmentation method based on the gray maximum value of the sliding window is also proposed. Moreover, the obtained rail surface image is clearer and the feature information of the rail surface can be completely retained, compared with the adaptive threshold segmentation and edge detection segmentation. ShuffleNet V2, a lightweight convolutional neural network, was selected as the corrugation detection model. The squeeze-and-excitation module was integrated into its basic unit to improve its channel attention, and the activation function was re-selected to make the detection have better real-time performance and accuracy. Through experimental verification, the average detection time of a single image of the improved model is 4.01ms, and the detection accuracy is 2.78% higher than that of the unimproved ShuffleNet V2. The research results will be beneficial to the development of the intelligent real-time detection of rail corrugation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztt发布了新的文献求助10
2秒前
毛豆爸爸应助郭淳采纳,获得40
2秒前
Amai发布了新的文献求助50
2秒前
2秒前
3秒前
白白熊发布了新的文献求助10
3秒前
yangching应助0626采纳,获得10
4秒前
个性的薯片完成签到,获得积分10
4秒前
WallfacerCN应助吴家小世界采纳,获得20
5秒前
5秒前
king_counter给king_counter的求助进行了留言
6秒前
CodeCraft应助刘若昕采纳,获得20
7秒前
不安青牛应助小船采纳,获得10
7秒前
ding应助bela采纳,获得10
8秒前
科研通AI2S应助姜君采纳,获得10
9秒前
薰硝壤应助lizzzzzz采纳,获得20
9秒前
无私书雪发布了新的文献求助10
11秒前
showitt完成签到,获得积分10
12秒前
belssingoo发布了新的文献求助10
12秒前
王沿橙完成签到,获得积分10
12秒前
传奇3应助ztt采纳,获得10
13秒前
13秒前
14秒前
王沿橙发布了新的文献求助10
15秒前
liang完成签到,获得积分10
15秒前
英俊的铭应助背后丹妗采纳,获得10
15秒前
高不二发布了新的文献求助10
16秒前
张子捷关注了科研通微信公众号
16秒前
故意的青荷完成签到,获得积分10
16秒前
16秒前
527应助大力云朵采纳,获得20
16秒前
彩色铅笔发布了新的文献求助10
17秒前
Ava应助爱睡午觉采纳,获得10
17秒前
薰硝壤应助Amai采纳,获得30
19秒前
19秒前
谨慎的雍完成签到,获得积分10
19秒前
aikey完成签到,获得积分10
20秒前
科研通AI2S应助成1采纳,获得10
20秒前
bai完成签到,获得积分10
22秒前
大方不可发布了新的文献求助10
23秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054259
求助须知:如何正确求助?哪些是违规求助? 2711253
关于积分的说明 7425350
捐赠科研通 2355845
什么是DOI,文献DOI怎么找? 1247387
科研通“疑难数据库(出版商)”最低求助积分说明 606388
版权声明 596048