析氧
分解水
电催化剂
纳米结构
电解
材料科学
超亲水性
化学工程
电解水
微生物电解槽
电极
纳米技术
催化作用
背景(考古学)
电化学
化学
物理化学
润湿
电解质
复合材料
地质学
生物化学
古生物学
光催化
工程类
作者
Sidharth Barik,Geeta Pandurang Kharabe,Rajith Illathvalappil,Chandrodai Pratap Singh,Fayis Kanheerampockil,Priyanka S. Walko,Suresh Bhat,R. Nandini Devi,C. P. Vinod,Saïlaja Krishnamurty,Sreekumar Kurungot
出处
期刊:Small
[Wiley]
日期:2023-08-23
卷期号:19 (50)
被引量:2
标识
DOI:10.1002/smll.202304143
摘要
Abstract The rational design of noble metal‐free electrocatalysts holds great promise for cost‐effective green hydrogen generation through water electrolysis. In this context, here, the development of a superhydrophilic bifunctional electrocatalyst that facilitates both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline conditions is demonstrated. This is achieved through the in situ growth of hierarchical NiMoO 4 @CoMoO 4 · x H 2 O nanostructure on nickel foam (NF) via a two‐step hydrothermal synthesis method. NiMoO 4 @CoMoO 4 · x H 2 O/NF facilitates OER and HER at the overpotentials of 180 and 220 mV, respectively, at the current density of 10 mA cm −2 . The NiMoO 4 @CoMoO 4 · x H 2 O/NF ǁ NiMoO 4 @CoMoO 4 · x H 2 O/NF cell can be operated at a potential of 1.60 V compared to 1.63 V displayed by the system based on the Pt/C@NFǁRuO 2 @NF standard electrode pair configuration at 10 mA cm −2 for overall water splitting. The density functional theory calculations for the OER process elucidate that the lowest Δ G of NiMoO 4 @CoMoO 4 compared to both Ni and NiMoO 4 is due to the presence of Co in the OER catalytic site and its synergistic interaction with NiMoO 4 . The preparative strategy and mechanistic understanding make the windows open for the large‐scale production of the robust and less expensive electrode material for the overall water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI