材料科学
弹性体
柔性电子器件
电导率
纳米技术
电解质
可伸缩电子设备
复合材料
数码产品
电极
物理化学
化学
作者
Wei Yi,Yuxi Li,Jianhui Yan,Yujun Liu,Xu‐Ming Xie
标识
DOI:10.1021/acsami.3c09780
摘要
Flexible transparent conductive materials show great potential in wearable electronics, flexible sensors, and so on. But the most used flexible conductive materials like hydrogels and ionogels suffer from evaporation and solvent leakage. For the application in these fields, integrated performances of preeminent resilience, transparency, stability, and conductivity that do not change with deformation are prerequisites. It is still challenging to handle the trade-off among these performances. Herein, a facile approach is established to balance these properties into one elastomer. Through the thiol-ene click reaction, mercaptopropyl-modified polydimethylsiloxane (mPDMS) is cross-linked and grafted by PEG-based macromonomers to prepare conductive elastomers. By anchoring with mPDMS through carbon-sulfur bonds, PEG can be evenly dispersed, resulting in ultratransparency (97%) and stable conductivity of as high as 1.68 × 10-2 S m-1, comparable to pure PEG/lithium salt conductivity. It also has a wide electrochemical stability window with a high voltage of 4.8 V. Moreover, the multibond network strategy is employed through grafting ligand 1-vinylimidazole to mPDMS to construct dynamic cross-links between Zn(II) and 1-vinylimidazol, bestowing excellent properties to the elastomers. Overall, elastomers with a well-balanced performance of high resilience, good conductivity, and ultratransparency are obtained, providing promising applications for soft electronics, lithium battery electrolytes, and flexible devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI