Operation stage division and RUL prediction of bearings based on 1DCNN-ON-LSTM

计算机科学 保险丝(电气) 方位(导航) 人工智能 降级(电信) 阶段(地层学) 一般化 模式识别(心理学) 特征(语言学) 卷积神经网络 点(几何) 数据挖掘 工程类 数学 数学分析 哲学 古生物学 电气工程 生物 电信 语言学 几何学
作者
Runxia Guo,Haonan Li,Chao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025035-025035 被引量:6
标识
DOI:10.1088/1361-6501/ad0e3a
摘要

Abstract Remaining useful life (RUL) prediction of bearings is significantly important to ensure reliable operation of bearings. In practice, it is routinely impossible to obtain the full life cycle degradation data of bearings that needs to be used in prediction. The accuracy of the RUL prediction of bearings is often affected by incomplete degradation data. Regarding this situation, this paper proposes a multi-sensor three-stage RUL prediction framework based on the one-dimensional convolutional ordered neuron long short-term memory (1DCNN-ON-LSTM) neural network. Firstly, 1DCNN is used to extract spatial features adaptively from multi-sensor’s data and fuse them into one-dimensional feature. Next, the unsupervised hierarchy mechanism of time series information based ON-LSTM is developed to determine the ‘initial degradation stage point’ and ‘rapid degradation stage point’ of the bearing from the one-dimensional feature. Once the signal features collected by sensors input to the model reach the degradation stage point, select the corresponding sensitive features as input and construct the 1DCNN-ON-LSTM model that performs RUL prediction after the degradation stage point to improve the prediction accuracy of the model. Based on the proposed hierarchy mechanism, the bearings’ operation process is divided into three operation stages: normal stage, initial degradation stage and rapid degradation stage. Finally, the experiments verify that the proposed method can effectively divide the operation stages of bearings to predict the RUL and improve the generalization ability and prediction accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀雁荷完成签到 ,获得积分10
刚刚
彭于晏应助繁荣的夏烟采纳,获得10
刚刚
星辰大海应助初心采纳,获得10
刚刚
彭于晏应助Andy采纳,获得10
刚刚
llll发布了新的文献求助30
1秒前
天气尚可完成签到,获得积分10
1秒前
2秒前
zhoull发布了新的文献求助10
2秒前
LDD完成签到,获得积分10
2秒前
Larrin完成签到,获得积分10
2秒前
mtbean发布了新的文献求助50
3秒前
酷酷的怀莲完成签到,获得积分10
3秒前
Hello应助西门吹雪采纳,获得10
3秒前
4秒前
清脆的语芙完成签到,获得积分10
4秒前
共享精神应助无聊的太清采纳,获得10
4秒前
酷波er应助Chaos采纳,获得10
4秒前
4秒前
zheng2001发布了新的文献求助10
5秒前
5秒前
6秒前
bkagyin应助云漫山采纳,获得10
6秒前
6秒前
科研通AI5应助聂sh采纳,获得10
6秒前
ww完成签到,获得积分10
6秒前
zho发布了新的文献求助10
7秒前
7秒前
飞跃发布了新的文献求助10
8秒前
llll完成签到,获得积分10
8秒前
科研通AI5应助清脆的语芙采纳,获得10
9秒前
莉莉子完成签到,获得积分10
9秒前
bushuren完成签到 ,获得积分20
9秒前
许蹦跶发布了新的文献求助30
9秒前
blchen2560完成签到,获得积分10
9秒前
暮然驳回了今后应助
9秒前
充电宝应助lucky采纳,获得10
10秒前
ding完成签到,获得积分10
10秒前
乐乐应助清爽老九采纳,获得30
10秒前
10秒前
科研通AI5应助西西歪采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658260
求助须知:如何正确求助?哪些是违规求助? 3220047
关于积分的说明 9735032
捐赠科研通 2929267
什么是DOI,文献DOI怎么找? 1603836
邀请新用户注册赠送积分活动 756764
科研通“疑难数据库(出版商)”最低求助积分说明 734133