Operation stage division and RUL prediction of bearings based on 1DCNN-ON-LSTM

计算机科学 保险丝(电气) 方位(导航) 人工智能 降级(电信) 阶段(地层学) 一般化 模式识别(心理学) 特征(语言学) 卷积神经网络 点(几何) 数据挖掘 工程类 数学 电信 古生物学 数学分析 语言学 哲学 电气工程 生物 几何学
作者
Runxia Guo,Haonan Li,Chao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025035-025035 被引量:6
标识
DOI:10.1088/1361-6501/ad0e3a
摘要

Abstract Remaining useful life (RUL) prediction of bearings is significantly important to ensure reliable operation of bearings. In practice, it is routinely impossible to obtain the full life cycle degradation data of bearings that needs to be used in prediction. The accuracy of the RUL prediction of bearings is often affected by incomplete degradation data. Regarding this situation, this paper proposes a multi-sensor three-stage RUL prediction framework based on the one-dimensional convolutional ordered neuron long short-term memory (1DCNN-ON-LSTM) neural network. Firstly, 1DCNN is used to extract spatial features adaptively from multi-sensor’s data and fuse them into one-dimensional feature. Next, the unsupervised hierarchy mechanism of time series information based ON-LSTM is developed to determine the ‘initial degradation stage point’ and ‘rapid degradation stage point’ of the bearing from the one-dimensional feature. Once the signal features collected by sensors input to the model reach the degradation stage point, select the corresponding sensitive features as input and construct the 1DCNN-ON-LSTM model that performs RUL prediction after the degradation stage point to improve the prediction accuracy of the model. Based on the proposed hierarchy mechanism, the bearings’ operation process is divided into three operation stages: normal stage, initial degradation stage and rapid degradation stage. Finally, the experiments verify that the proposed method can effectively divide the operation stages of bearings to predict the RUL and improve the generalization ability and prediction accuracy of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助2vo采纳,获得10
1秒前
好运来来来完成签到,获得积分10
3秒前
光亮的思柔完成签到,获得积分10
3秒前
4秒前
Olive完成签到 ,获得积分10
4秒前
零度火发布了新的文献求助10
4秒前
5秒前
re发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
FashionBoy应助asdfqwer采纳,获得10
7秒前
ar发布了新的文献求助10
9秒前
9秒前
fish完成签到,获得积分20
9秒前
dusk完成签到 ,获得积分10
10秒前
NexusExplorer应助lin采纳,获得10
10秒前
研友_VZG7GZ应助lin采纳,获得10
10秒前
Owen应助lin采纳,获得10
11秒前
Xuxr发布了新的文献求助10
12秒前
14秒前
123发布了新的文献求助10
14秒前
14秒前
17秒前
英姑应助鲤角兽采纳,获得10
17秒前
18秒前
2vo发布了新的文献求助10
18秒前
确幸完成签到 ,获得积分10
19秒前
无极微光应助mmm采纳,获得20
19秒前
康伯爵完成签到,获得积分10
19秒前
范希文在洞庭湖搞科研完成签到 ,获得积分10
19秒前
Zevin完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
六尺巷完成签到,获得积分10
21秒前
Xuxr完成签到,获得积分20
22秒前
Olive发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
燕儿发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5814803
求助须知:如何正确求助?哪些是违规求助? 5920402
关于积分的说明 15541277
捐赠科研通 4937654
什么是DOI,文献DOI怎么找? 2659214
邀请新用户注册赠送积分活动 1605593
关于科研通互助平台的介绍 1560130