亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GGI-DDI: Identification for key molecular substructures by granule learning to interpret predicted drug–drug interactions

可解释性 计算机科学 人工智能 机器学习 药物靶点 药品 药物与药物的相互作用 训练集 钥匙(锁) 药理学 医学 计算机安全
作者
Hui Yu,Jing Wang,Shiyu Zhao,Omayo Silver,Zun Liu,JingTao Yao,Jian‐Yu Shi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122500-122500 被引量:1
标识
DOI:10.1016/j.eswa.2023.122500
摘要

Deep learning-based approaches have achieved promising performance in predicting drug-drug interactions (DDIs). Nevertheless, a significant drawback of these approaches is their limited interpretability, hindering their practical applicability for clinicians. Based on current research findings, drug interactions frequently arise from specific substructures or functional groups present in drugs. To enhance the interpretability of deep learning models, we propose a novel end-to-end learning approach that employs granular computing to identify pivotal substructures instead of using conventional atom-based or predefined molecular fingerprint methods to predict DDIs. We refer to this model as "GGI-DDI" (Granule-Granule Interaction for Drug-Drug Interaction). In this method, drugs are granulated into a set of coarser granules that represent the key substructures or functional groups of drugs. Subsequently, the detection of DDIs occurs through the examination of interactions among these granules, aligning more closely with human cognitive patterns. We conducted thorough experiments on the TWOSIDES dataset, and the results show that GGI-DDI achieved impeccable accuracy in predicting DDIs. We compared GGI-DDI to state-of-the-art baseline models including DDIMDL, GoGNN, DNN, STNN-DDI and GMPNN-CS, GGI-DDI almost consistently outperforms the baselines across all metrics in terms of Accuracy (Acc), Area under the receiver operating characteristic (Auc), Area under precision recall curve (Aupr) and Precision (Pre) in both transductive and inductive scenarios. Finally, we provide case studies to illustrate how GGI-DDI can effectively reveal important substructure pairs across drugs about a specific DDI type, offering insights into the underlying mechanism of these interactions. We find that this interpretability can serve as valuable guidance in the advancement of novel drug development and poly-drug therapy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tracyzhang完成签到 ,获得积分10
9秒前
袁雪蓓完成签到 ,获得积分10
17秒前
ren完成签到,获得积分10
19秒前
糯米丸子完成签到,获得积分10
36秒前
fufu完成签到 ,获得积分10
41秒前
爆米花应助Reyi采纳,获得10
49秒前
MchemG应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
归尘应助科研通管家采纳,获得10
50秒前
归尘应助科研通管家采纳,获得10
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
归尘应助科研通管家采纳,获得10
50秒前
所所应助科研通管家采纳,获得10
50秒前
归尘应助科研通管家采纳,获得10
50秒前
50秒前
z1完成签到 ,获得积分10
54秒前
VDC发布了新的文献求助10
55秒前
58秒前
Reyi发布了新的文献求助10
1分钟前
1分钟前
野菜生活发布了新的文献求助10
1分钟前
琪凯定理发布了新的文献求助10
1分钟前
小白发布了新的文献求助10
1分钟前
积极废物完成签到 ,获得积分10
1分钟前
abc完成签到 ,获得积分10
1分钟前
琪凯定理完成签到,获得积分10
1分钟前
科研通AI5应助shaco采纳,获得10
1分钟前
打游客嘴巴子完成签到,获得积分10
1分钟前
1分钟前
叶子的叶完成签到,获得积分10
1分钟前
哈哈发布了新的文献求助10
1分钟前
SciGPT应助白羽采纳,获得10
1分钟前
1分钟前
草莓发布了新的文献求助10
1分钟前
1分钟前
白羽发布了新的文献求助10
1分钟前
白羽完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778416
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990