CSformer: Enhancing deep learning efficiency for intelligent IoT

计算机科学 聚类分析 深度学习 冗余(工程) 人工智能 机器学习 选择(遗传算法) 物联网 图层(电子) 应用层 星团(航天器) 数据挖掘 嵌入式系统 计算机网络 操作系统 软件部署 有机化学 化学
作者
Xu Jia,Han Wu,Ruochen Zhang,Min Peng
出处
期刊:Computer Communications [Elsevier BV]
卷期号:214: 33-45
标识
DOI:10.1016/j.comcom.2023.11.007
摘要

The rapid development of deep learning technology has led to increasing demand for more intelligent, automated, and humanized Internet of Things (IoT) devices. Deep learning models, while endowing IoT devices with the capability to learn higher-level features, concurrently impose more demanding computational and storage prerequisites on the hardware. To tackle the challenge and enable the practical application of deep learning models in IoT devices, we propose a novel efficient Transformer called CSformer, which incorporates intra-layer cluster and inter-layer selection. Intra-layer cluster is performed using a k-means++ based generation algorithm to improve cluster accuracy. To address the issues of information loss caused by clustering, we propose cluster center information enhancement and clustering loss calculation modules. The inter-layer selection strategy selects tokens according to their contribution, consistently diminishes redundancy, and prioritizes the retention of crucial information. By consistently reducing the sequence length, the inter-layer selection significantly improves training speed and reduces the memory occupation of the model. The experimental results indicate that in two common scenarios for intelligent IoT, namely text classification and sequence labeling, CSformer significantly outperforms the baseline models. Specifically, in the text classification task, our model achieves an average 22.66% reduction in memory consumption, a 37.98% decrease in time consumption, and a superior 9.58% performance improvement compared to baseline models across six datasets. Additional experiments substantiate the efficacy of the intra-layer cluster and inter-layer selection modules, as demonstrated through ablation experiments, overall performance, and visualization. The intra-layer cluster module enhances the performance of existing models by achieving more precise clustering and mitigating information loss, leading to significant performance improvements. The inter-layer selection module enhances the efficiency of existing studies by reducing model memory consumption and improving computational efficiency through the selective retention of essential tokens. This can effectively facilitate future research in applying advanced deep learning models to intelligent IoT, expanding the range of application scenarios and tasks within the field of intelligent IoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
很靠近海完成签到,获得积分10
8秒前
rye发布了新的文献求助30
8秒前
西北大灰狼完成签到,获得积分10
8秒前
达啦崩啦完成签到 ,获得积分10
9秒前
9秒前
121231233发布了新的文献求助10
9秒前
下辈子不读书做只猪完成签到 ,获得积分10
10秒前
无辜的新晴完成签到 ,获得积分10
10秒前
Childwise完成签到,获得积分10
11秒前
熊猫小肿完成签到,获得积分10
11秒前
12秒前
???完成签到,获得积分10
12秒前
嵇南露完成签到,获得积分10
13秒前
阿欢完成签到 ,获得积分10
14秒前
欧阳发布了新的文献求助10
15秒前
15秒前
PONY完成签到,获得积分20
18秒前
18秒前
sf发布了新的文献求助10
22秒前
111完成签到,获得积分10
22秒前
郑洋完成签到 ,获得积分10
22秒前
星星星醒醒完成签到,获得积分10
22秒前
无辜的新晴关注了科研通微信公众号
27秒前
28秒前
Rage_Wang完成签到,获得积分10
30秒前
时尚的莛完成签到,获得积分10
30秒前
langwuya完成签到,获得积分20
30秒前
css1997完成签到 ,获得积分10
31秒前
冷傲的傲霜完成签到,获得积分10
31秒前
31秒前
langwuya发布了新的文献求助10
33秒前
快乐寄风完成签到 ,获得积分10
34秒前
hlc完成签到,获得积分10
35秒前
PONY关注了科研通微信公众号
37秒前
太空工程师完成签到,获得积分10
38秒前
38秒前
很靠近海发布了新的文献求助10
38秒前
Liu完成签到,获得积分0
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096