De Novo Cleaning of Chimeric MS/MS Spectra for LC-MS/MS-Based Metabolomics

化学 代谢组学 质谱法 色谱法
作者
Tingting Zhao,Shipei Xing,Huaxu Yu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (35): 13018-13028 被引量:4
标识
DOI:10.1021/acs.analchem.3c00736
摘要

The purity of tandem mass spectrometry (MS/MS) is essential to MS/MS-based metabolite annotation and unknown exploration. This work presents a de novo approach to cleaning chimeric MS/MS spectra generated in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics. The assumption is that true fragments and their precursors are well correlated across the samples in a study, while false or contamination fragments are rather independent. Using data simulation, this work starts with an investigation of the negative effects of chimeric MS/MS spectra on spectral similarity analysis and molecular networking. Next, the characteristics of true and false fragments in chimeric MS/MS spectra were investigated using MS/MS of chemical standards. We recognized three fragment peak attributes indicative of whether a peak is a false fragment, including (1) intensity ratio fluctuation, (2) appearance rate, and (3) relative intensity. Using these attributes, we tested three machine learning models and identified XGBoost as the best model to achieve an area under the precision-recall curve of 0.98 for a clear separation between true and false fragments. Based on the trained model, we constructed an automated bioinformatic platform, DNMS2Purifier (short for de novo MS2Purifier), for metabolic features from metabolomics studies. DNMS2Purifier recognizes and processes chimeric MS/MS spectra without additional sample analysis or library confirmation. DNMS2Purifer was evaluated on a metabolomics data set generated with different MS/MS precursor isolation windows. It successfully captured the increase in the number of false fragments from the increased isolation window. DNMS2Purifier was also compared to MS2Purifier, an existing MS/MS spectral cleaning tool based on the addition of data-independent acquisition (DIA) analysis. Results indicated that DNMS2Purifier uniquely recognizes false fragments, which complements the previous DIA-based approach. Finally, DNMS2Purifier was demonstrated using a real experimental metabolomics study, showing improved MS/MS spectral quality and leading to an improved spectral match ratio and molecular networking outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿绿完成签到,获得积分10
1秒前
张同学发布了新的文献求助10
3秒前
小梦发布了新的文献求助10
3秒前
4秒前
飞飞发布了新的文献求助10
5秒前
9秒前
10秒前
LKX完成签到,获得积分10
10秒前
无魇完成签到,获得积分10
11秒前
大方绿兰完成签到 ,获得积分10
13秒前
刘梦圆发布了新的文献求助10
16秒前
LKX发布了新的文献求助10
17秒前
活泼的手机完成签到,获得积分10
17秒前
修脚大师发布了新的文献求助20
18秒前
吴雨木目完成签到 ,获得积分10
19秒前
Liu发布了新的文献求助10
20秒前
喜悦曼荷完成签到 ,获得积分10
22秒前
22秒前
YL发布了新的文献求助10
23秒前
24秒前
26秒前
26秒前
bkagyin应助beiyangtidu采纳,获得30
27秒前
bin发布了新的文献求助30
28秒前
29秒前
32秒前
伶俐问薇完成签到,获得积分20
32秒前
在水一方应助ChenYX采纳,获得10
33秒前
SciGPT应助爱做实验的泡利采纳,获得10
33秒前
华仔应助wonder采纳,获得10
34秒前
迟迟发布了新的文献求助10
35秒前
充电宝应助美味肉蟹煲采纳,获得10
35秒前
正直的白羊完成签到 ,获得积分10
35秒前
ebangdeng完成签到,获得积分10
36秒前
beiyangtidu完成签到,获得积分10
36秒前
Hello应助单于万言采纳,获得10
37秒前
littlepuppy发布了新的文献求助10
38秒前
Ava应助红宝采纳,获得10
38秒前
大个应助Leo000007采纳,获得10
39秒前
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229344
求助须知:如何正确求助?哪些是违规求助? 2877046
关于积分的说明 8197662
捐赠科研通 2544371
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646946
邀请新用户注册赠送积分活动 621742