Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care

败血症 医学 接收机工作特性 格拉斯哥昏迷指数 急诊医学 感染性休克 重症监护医学 重症监护室 风险因素 回顾性队列研究 曲线下面积 机器学习 内科学 外科 计算机科学
作者
Zhengyu Jiang,Lulong Bo,Lei Wang,Yan Xie,Jianping Cao,Yao Ying,Wenbin Lu,Xiaoming Deng,Tao Yang,Jinjun Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107772-107772 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107772
摘要

Interpretable and real-time prediction of sepsis and risk factor analysis could enable timely treatment by clinicians and improve patient outcomes. To develop an interpretable machine-learning model for the prediction and risk factor analysis of sepsis and septic death.This is a retrospective observational cohort study based on the Medical Information Mart for Intensive Care (MIMIC-IV) dataset; 69,619 patients from the database were screened. The two outcomes include patients diagnosed with sepsis and the death of septic patients. Clinical variables from ICU admission to outcomes were analyzed: demographic data, vital signs, Glasgow Coma Scale scores, laboratory test results, and results for arterial blood gasses (ABGs). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were based on the Shapley additive explanations (SHAP), and the clustered analysis was based on the combination of K-means and dimensionality reduction algorithms of t-SNE and PCA.For the analysis of sepsis and septic death, 47,185 and 2480 patients were enrolled, respectively. The XGBoost model achieved a predictive value of area under the curve (AUC): 0.745 [0.731-0.759] for sepsis prediction and 0.8 [0.77, 0.828] for septic death prediction. The real-time prediction model was trained to predict by day and visualize the individual or combined risk factor effects on the outcomes based on SHAP values. Clustered analysis separated the two phenotypes with distinct risk factors among patients with septic death.The proposed real-time, clustered prediction model for sepsis and septic death exhibited superior performance in predicting the outcomes and visualizing the risk factors in a real-time and interpretable manner to distinguish and mitigate patient risks, thus promising immense potential in effective clinical decision making and comprehensive understanding of complex diseases such as sepsis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助w1kend采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
无极微光应助橘子采纳,获得20
2秒前
苛帅发布了新的文献求助10
3秒前
4秒前
共享精神应助gan采纳,获得10
4秒前
5秒前
大头娃娃发布了新的文献求助10
5秒前
lai发布了新的文献求助10
5秒前
6秒前
汉堡包应助guo采纳,获得10
8秒前
冰激凌发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助Ge采纳,获得10
10秒前
李健应助lai采纳,获得10
11秒前
骆西西发布了新的文献求助10
12秒前
banban完成签到,获得积分10
12秒前
科研通AI2S应助大可采纳,获得10
13秒前
13秒前
脑洞疼应助w1kend采纳,获得10
14秒前
在水一方应助瓜瓜瓜采纳,获得20
15秒前
香蕉觅云应助小巧的柚子采纳,获得10
15秒前
29发布了新的文献求助10
15秒前
liu完成签到,获得积分10
16秒前
锦沫完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
爱笑的紫霜完成签到 ,获得积分10
17秒前
CipherSage应助zhangyu采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
李虹发布了新的文献求助10
20秒前
冷空气发布了新的文献求助10
23秒前
杰尼龟发布了新的文献求助10
25秒前
kk发布了新的文献求助10
25秒前
26秒前
JamesPei应助seven采纳,获得10
27秒前
我是老大应助香香的臭宝采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779