Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care

败血症 医学 接收机工作特性 格拉斯哥昏迷指数 急诊医学 感染性休克 重症监护医学 重症监护室 风险因素 回顾性队列研究 曲线下面积 机器学习 内科学 外科 计算机科学
作者
Zhengyu Jiang,Lulong Bo,Lei Wang,Yan Xie,Jianping Cao,Yao Ying,Wenbin Lu,Xiaoming Deng,Tao Yang,Jinjun Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107772-107772 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107772
摘要

Interpretable and real-time prediction of sepsis and risk factor analysis could enable timely treatment by clinicians and improve patient outcomes. To develop an interpretable machine-learning model for the prediction and risk factor analysis of sepsis and septic death.This is a retrospective observational cohort study based on the Medical Information Mart for Intensive Care (MIMIC-IV) dataset; 69,619 patients from the database were screened. The two outcomes include patients diagnosed with sepsis and the death of septic patients. Clinical variables from ICU admission to outcomes were analyzed: demographic data, vital signs, Glasgow Coma Scale scores, laboratory test results, and results for arterial blood gasses (ABGs). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were based on the Shapley additive explanations (SHAP), and the clustered analysis was based on the combination of K-means and dimensionality reduction algorithms of t-SNE and PCA.For the analysis of sepsis and septic death, 47,185 and 2480 patients were enrolled, respectively. The XGBoost model achieved a predictive value of area under the curve (AUC): 0.745 [0.731-0.759] for sepsis prediction and 0.8 [0.77, 0.828] for septic death prediction. The real-time prediction model was trained to predict by day and visualize the individual or combined risk factor effects on the outcomes based on SHAP values. Clustered analysis separated the two phenotypes with distinct risk factors among patients with septic death.The proposed real-time, clustered prediction model for sepsis and septic death exhibited superior performance in predicting the outcomes and visualizing the risk factors in a real-time and interpretable manner to distinguish and mitigate patient risks, thus promising immense potential in effective clinical decision making and comprehensive understanding of complex diseases such as sepsis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zhou_完成签到,获得积分10
刚刚
科研通AI6应助朴实曼岚采纳,获得10
刚刚
领导范儿应助汀汀采纳,获得10
刚刚
此木本去一应助tomato采纳,获得10
刚刚
1秒前
所所应助Shinchan采纳,获得10
1秒前
BDH完成签到,获得积分20
2秒前
香菜头发布了新的文献求助10
2秒前
林珍发布了新的文献求助10
2秒前
SQDHZJ发布了新的文献求助10
3秒前
GG波波发布了新的文献求助10
5秒前
吴筮发布了新的文献求助10
5秒前
深情安青应助姜萌萌采纳,获得10
6秒前
niumi190完成签到,获得积分0
7秒前
11231发布了新的文献求助10
7秒前
斯文败类应助平淡夏云采纳,获得10
8秒前
gz发布了新的文献求助10
8秒前
9秒前
科研通AI6应助Shinchan采纳,获得10
9秒前
牛牛最棒完成签到 ,获得积分10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
小蘑菇应助wtldkz采纳,获得10
13秒前
默默的妙竹完成签到 ,获得积分10
13秒前
裴果发布了新的文献求助10
14秒前
Paul111发布了新的文献求助10
15秒前
16秒前
Jes发布了新的文献求助30
16秒前
18秒前
18秒前
李健应助昭蘅采纳,获得10
18秒前
轻松毒娘完成签到,获得积分10
19秒前
华仔应助吴筮采纳,获得10
20秒前
天天快乐应助合适孤兰采纳,获得10
22秒前
lucinda发布了新的文献求助10
23秒前
23秒前
Yonica完成签到,获得积分10
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715