Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care

败血症 医学 接收机工作特性 格拉斯哥昏迷指数 急诊医学 感染性休克 重症监护医学 重症监护室 风险因素 回顾性队列研究 曲线下面积 机器学习 内科学 外科 计算机科学
作者
Zhengyu Jiang,Lulong Bo,Lei Wang,Yan Xie,Jianping Cao,Yao Ying,Wenbin Lu,Xiaoming Deng,Tao Yang,Jinjun Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:241: 107772-107772 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107772
摘要

Interpretable and real-time prediction of sepsis and risk factor analysis could enable timely treatment by clinicians and improve patient outcomes. To develop an interpretable machine-learning model for the prediction and risk factor analysis of sepsis and septic death.This is a retrospective observational cohort study based on the Medical Information Mart for Intensive Care (MIMIC-IV) dataset; 69,619 patients from the database were screened. The two outcomes include patients diagnosed with sepsis and the death of septic patients. Clinical variables from ICU admission to outcomes were analyzed: demographic data, vital signs, Glasgow Coma Scale scores, laboratory test results, and results for arterial blood gasses (ABGs). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were based on the Shapley additive explanations (SHAP), and the clustered analysis was based on the combination of K-means and dimensionality reduction algorithms of t-SNE and PCA.For the analysis of sepsis and septic death, 47,185 and 2480 patients were enrolled, respectively. The XGBoost model achieved a predictive value of area under the curve (AUC): 0.745 [0.731-0.759] for sepsis prediction and 0.8 [0.77, 0.828] for septic death prediction. The real-time prediction model was trained to predict by day and visualize the individual or combined risk factor effects on the outcomes based on SHAP values. Clustered analysis separated the two phenotypes with distinct risk factors among patients with septic death.The proposed real-time, clustered prediction model for sepsis and septic death exhibited superior performance in predicting the outcomes and visualizing the risk factors in a real-time and interpretable manner to distinguish and mitigate patient risks, thus promising immense potential in effective clinical decision making and comprehensive understanding of complex diseases such as sepsis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
府中园马发布了新的文献求助10
刚刚
Duffy完成签到,获得积分10
1秒前
小青椒应助fangzhi采纳,获得60
1秒前
price发布了新的文献求助10
1秒前
2秒前
4秒前
MeSs完成签到,获得积分10
4秒前
4秒前
思柔完成签到,获得积分10
4秒前
gorgeous发布了新的文献求助30
5秒前
5秒前
英姑应助MM采纳,获得20
6秒前
7秒前
Andyfragrance完成签到,获得积分10
7秒前
科研通AI6应助simey采纳,获得10
7秒前
7秒前
善学以致用应助府中园马采纳,获得10
7秒前
white给white的求助进行了留言
7秒前
xuedan发布了新的文献求助10
8秒前
背英语发布了新的文献求助10
8秒前
玩命的靖仇完成签到,获得积分10
8秒前
8秒前
科研通AI6应助Zhusy采纳,获得10
9秒前
思源应助Zhusy采纳,获得10
9秒前
机灵的波比应助affff采纳,获得10
9秒前
tombo100发布了新的文献求助50
9秒前
9秒前
碧蓝的安露完成签到 ,获得积分10
10秒前
Ava应助bluesky采纳,获得10
10秒前
10秒前
充电宝应助割牙龈肉采纳,获得10
11秒前
11秒前
11秒前
12秒前
彩色亿先发布了新的文献求助10
13秒前
田様应助anwen采纳,获得10
13秒前
领导范儿应助kk采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336