希尔伯特-黄变换
多重分形系统
分形
人工智能
图像纹理
分形变换
纹理(宇宙学)
模式识别(心理学)
小波
小波变换
缩放比例
计算机科学
图像(数学)
数字图像
计算机视觉
数学
图像处理
图像压缩
数学分析
几何学
滤波器(信号处理)
作者
Lei Yang,Tiegang Zhang,Feng Lu,Minxuan Zhang
标识
DOI:10.1109/ainit59027.2023.10212874
摘要
The surface texture and microstructure of digital images have an important influence on the construction of features such as image analysis, transformation, and compression. Studies have shown that the fractal spectrum parameters of different types of subject matter will be significantly different. Multifractal spectra and scaling indices quantify the heterogeneity of structural features, demonstrating multiscaling properties. This paper proposes a multifractal spectrum algorithm combining empirical mode decomposition (EMD) and wavelet leaders, starting from the image texture classification task. This method describes the surface shape and microstructure of the image, extends the mode decomposition of the one-dimensional signal in the Hilbert-Huang transform to the two-dimensional image, and gives an image descriptor based on the fractal spectrum. Simulation results demonstrate the accuracy of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI