Knowledge graph completion method based on quantum embedding and quaternion interaction enhancement

嵌入 计算机科学 知识图 四元数 理论计算机科学 图形 人工智能 数学 几何学
作者
LinYu Li,Xuan Zhang,Zhi Jin,Chen Gao,Rui Zhu,Y. T. Liang,Y. Ma
出处
期刊:Information Sciences [Elsevier]
卷期号:648: 119548-119548 被引量:1
标识
DOI:10.1016/j.ins.2023.119548
摘要

Knowledge graphs (KG) are used for many downstream tasks in artificial intelligence (AI). However, owing to accuracy issues associated with information extraction, KGs are often incomplete. This has led to the emergence of knowledge graph completion (KGC) tasks. Their purpose is to learn known facts to infer the missing entities in triples. Traditional embedding-based methods usually only focus on the information of individual triples and do not use the deep logical relationships of the KG. In this study, we propose a new KGC method referred to as QIQE-KGC. It uses quantum embedding and quaternion space interaction to capture the external logical relationship between triples in a KG and enhance the connection between entities and relations within a single triple to model and represent the KG. The proposed QIQE-KGC model can capture richer logical information and has more powerful and complex relationship modeling capabilities. Extensive experimental results using QIQE-KGC on 11 datasets demonstrate that the model achieves outstanding performance. Compared to the baseline models, QIQE-KGC produced the best results on most datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助舒服的觅云采纳,获得10
刚刚
刚刚
1秒前
myth发布了新的文献求助10
1秒前
1秒前
Hello应助科研小猪采纳,获得10
2秒前
leo发布了新的文献求助20
3秒前
3秒前
彭于晏应助小太阳采纳,获得30
4秒前
英姑应助lmy采纳,获得10
4秒前
4秒前
4秒前
Origin完成签到 ,获得积分10
4秒前
bi完成签到,获得积分10
4秒前
Lapporange发布了新的文献求助10
5秒前
5秒前
何必在乎发布了新的文献求助10
5秒前
6秒前
6秒前
rei402发布了新的文献求助10
6秒前
感动听白完成签到,获得积分10
6秒前
大胆初音发布了新的文献求助10
6秒前
6秒前
机智阿智发布了新的文献求助10
6秒前
6秒前
天天快乐应助猪猪hero采纳,获得10
6秒前
7秒前
文若完成签到,获得积分10
7秒前
斯文败类应助chenxi采纳,获得10
7秒前
www发布了新的文献求助10
7秒前
打打应助tly采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994