干扰(通信)
计算机科学
人工神经网络
无人机
实时计算
人工智能
信号(编程语言)
模式识别(心理学)
电信
频道(广播)
生物
遗传学
程序设计语言
作者
Xiangkun Li,Bin Guo,Qianrui Guo,Ma Weijiao
出处
期刊:Journal of physics
[IOP Publishing]
日期:2023-11-01
卷期号:2637 (1): 012001-012001
标识
DOI:10.1088/1742-6596/2637/1/012001
摘要
Abstract This paper proposes a method for detecting communication interference in unmanned aerial vehicles (UAVs). First, we train the BP neural network with signal data from interference attacks, and then continuously optimize the BP neural network using the sparrow search algorithm (SSA). After iterations, we obtain the final interference detection model. With this detection model, we can detect whether there are malicious interference signals in the drone flight environment and evaluate the detection model using the detection rate. Finally, our detection model has an accuracy of up to 93.64%.
科研通智能强力驱动
Strongly Powered by AbleSci AI