Sparse Low-Rank Multi-View Subspace Clustering With Consensus Anchors and Unified Bipartite Graph

二部图 聚类分析 子空间拓扑 秩(图论) 人工智能 数学 计算机科学 图形 模式识别(心理学) 组合数学
作者
Shengju Yu,Suyuan Liu,Siwei Wang,Chang Tang,Zhigang Luo,Xinwang Liu,En Zhu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:23
标识
DOI:10.1109/tnnls.2023.3332335
摘要

Anchor technology is popularly employed in multi-view subspace clustering (MVSC) to reduce the complexity cost. However, due to the sampling operation being performed on each individual view independently and not considering the distribution of samples in all views, the produced anchors are usually slightly distinguishable, failing to characterize the whole data. Moreover, it is necessary to fuse multiple separated graphs into one, which leads to the final clustering performance heavily subject to the fusion algorithm adopted. What is worse, existing MVSC methods generate dense bipartite graphs, where each sample is associated with all anchor candidates. We argue that this dense-connected mechanism will fail to capture the essential local structures and degrade the discrimination of samples belonging to the respective near anchor clusters. To alleviate these issues, we devise a clustering framework named SL-CAUBG. Specifically, we do not utilize sampling strategy but optimize to generate the consensus anchors within all views so as to explore the information between different views. Based on the consensus anchors, we skip the fusion stage and directly construct the unified bipartite graph across views. Most importantly, $\ell_1$ norm and Laplacian-rank constraints employed on the unified bipartite graph make it capture both local and global structures simultaneously. $\ell_1$ norm helps eliminate the scatters between anchors and samples by constructing sparse links and guarantees our graph to be with clear anchor-sample affinity relationship. Laplacian-rank helps extract the global characteristics by measuring the connectivity of unified bipartite graph. To deal with the nondifferentiable objective function caused by $\ell_1$ norm, we adopt an iterative re-weighted method and the Newton's method. To handle the nonconvex Laplacian-rank, we equivalently transform it as a convex trace constraint. We also devise a four-step alternate method with linear complexity to solve the resultant problem. Substantial experiments show the superiority of our SL-CAUBG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangzanwayne完成签到,获得积分10
刚刚
FIN应助underway采纳,获得10
刚刚
hehe完成签到,获得积分10
刚刚
空白格完成签到 ,获得积分10
1秒前
英姑应助风中的非笑采纳,获得10
1秒前
在水一方应助唐古拉采纳,获得10
1秒前
酷炫大白发布了新的文献求助10
1秒前
张世奇发布了新的文献求助10
2秒前
wdn0411完成签到,获得积分10
3秒前
3秒前
活泼蜡烛完成签到,获得积分10
3秒前
ilk666完成签到,获得积分10
3秒前
DrKe完成签到,获得积分10
4秒前
英俊亦巧完成签到,获得积分10
4秒前
健壮的思枫完成签到,获得积分10
4秒前
蒋若风完成签到,获得积分10
4秒前
4秒前
小李完成签到,获得积分20
4秒前
执着的一兰完成签到,获得积分10
5秒前
dola完成签到,获得积分10
5秒前
qiang完成签到,获得积分10
6秒前
阔达荣轩发布了新的文献求助10
8秒前
rover完成签到 ,获得积分10
9秒前
奶茶的后来完成签到,获得积分10
9秒前
汉堡包应助小李采纳,获得10
9秒前
可耐的乘风完成签到,获得积分10
9秒前
jackbauer发布了新的文献求助10
9秒前
子车谷波完成签到,获得积分10
9秒前
锦秋完成签到 ,获得积分10
10秒前
xczhu完成签到,获得积分10
11秒前
嘉星糖完成签到,获得积分10
11秒前
sdasdd10完成签到 ,获得积分10
12秒前
小鱼完成签到,获得积分10
13秒前
Epiphany完成签到,获得积分10
13秒前
晚云烟月完成签到,获得积分10
14秒前
15秒前
子初完成签到,获得积分10
15秒前
材袅完成签到,获得积分10
15秒前
晨曦完成签到,获得积分10
15秒前
杨小羊完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855