Sparse Low-Rank Multi-View Subspace Clustering With Consensus Anchors and Unified Bipartite Graph

二部图 聚类分析 子空间拓扑 秩(图论) 人工智能 数学 计算机科学 图形 模式识别(心理学) 组合数学
作者
Shengju Yu,Suyuan Liu,Siwei Wang,Chang Tang,Zhigang Luo,Xinwang Liu,En Zhu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:23
标识
DOI:10.1109/tnnls.2023.3332335
摘要

Anchor technology is popularly employed in multi-view subspace clustering (MVSC) to reduce the complexity cost. However, due to the sampling operation being performed on each individual view independently and not considering the distribution of samples in all views, the produced anchors are usually slightly distinguishable, failing to characterize the whole data. Moreover, it is necessary to fuse multiple separated graphs into one, which leads to the final clustering performance heavily subject to the fusion algorithm adopted. What is worse, existing MVSC methods generate dense bipartite graphs, where each sample is associated with all anchor candidates. We argue that this dense-connected mechanism will fail to capture the essential local structures and degrade the discrimination of samples belonging to the respective near anchor clusters. To alleviate these issues, we devise a clustering framework named SL-CAUBG. Specifically, we do not utilize sampling strategy but optimize to generate the consensus anchors within all views so as to explore the information between different views. Based on the consensus anchors, we skip the fusion stage and directly construct the unified bipartite graph across views. Most importantly, $\ell_1$ norm and Laplacian-rank constraints employed on the unified bipartite graph make it capture both local and global structures simultaneously. $\ell_1$ norm helps eliminate the scatters between anchors and samples by constructing sparse links and guarantees our graph to be with clear anchor-sample affinity relationship. Laplacian-rank helps extract the global characteristics by measuring the connectivity of unified bipartite graph. To deal with the nondifferentiable objective function caused by $\ell_1$ norm, we adopt an iterative re-weighted method and the Newton's method. To handle the nonconvex Laplacian-rank, we equivalently transform it as a convex trace constraint. We also devise a four-step alternate method with linear complexity to solve the resultant problem. Substantial experiments show the superiority of our SL-CAUBG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张益达完成签到,获得积分10
1秒前
Cheny完成签到 ,获得积分10
1秒前
1秒前
2秒前
华仔应助淡定访枫采纳,获得10
2秒前
康丽发布了新的文献求助10
3秒前
Aster发布了新的文献求助10
3秒前
Yuanchaoyi完成签到,获得积分20
3秒前
Viki完成签到,获得积分10
3秒前
毛毛完成签到,获得积分20
4秒前
踏实语海完成签到,获得积分10
4秒前
戊烷完成签到,获得积分10
4秒前
阔达的海完成签到,获得积分10
4秒前
5秒前
番茄炒西红柿完成签到,获得积分10
5秒前
冷静灵竹完成签到,获得积分10
5秒前
余喆完成签到,获得积分10
6秒前
Yuanchaoyi发布了新的文献求助10
6秒前
李天乐发布了新的文献求助10
6秒前
金元宝完成签到,获得积分10
6秒前
充电宝应助伶俐问薇采纳,获得10
6秒前
希望天下0贩的0应助大白采纳,获得10
7秒前
情怀应助怕黑的凝旋采纳,获得10
7秒前
mrlow完成签到,获得积分10
7秒前
gelinhao完成签到,获得积分10
8秒前
GEN完成签到,获得积分20
9秒前
9秒前
iiing完成签到,获得积分10
9秒前
9秒前
重要的板凳完成签到,获得积分10
9秒前
Venus完成签到,获得积分10
9秒前
田様应助吹风机采纳,获得10
9秒前
自然的霸完成签到,获得积分10
10秒前
深情安青应助珊珊采纳,获得10
10秒前
壮观的夏蓉完成签到,获得积分0
10秒前
机灵似狮发布了新的文献求助10
10秒前
云深不知处完成签到,获得积分10
11秒前
康丽完成签到,获得积分10
11秒前
13秒前
橘酥酥呀完成签到,获得积分20
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167