🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drought prediction: Insights from the fusion of LSTM and multi-source factors

环境科学 背景(考古学) 降水 地表径流 水资源 气候学 含水量 预测建模 气候变化 气象学 计算机科学 机器学习 地理 生态学 岩土工程 考古 地质学 工程类 生物
作者
Tian Wang,Xinjun Tu,Vijay P. Singh,Xiaohong Chen,Kairong Lin,Zonglin Zhou
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:902: 166361-166361 被引量:17
标识
DOI:10.1016/j.scitotenv.2023.166361
摘要

In the context of current global climate change, accurate drought prediction is crucial for water resources management and agricultural production. Although traditional drought forecasting methods largely rely on historical climatic data, these methods cannot fully consider the long-term effects of factors, such as climate change, and the evaluation of prediction results is limited. Therefore, this study proposed a drought prediction and evaluation framework based on Long Short-Term Memory (LSTM), integrating multi-source factors to significantly enhance the accuracy and reliability of drought prediction models. This framework applied two distinct forecasting schemes. The first scheme utilized ten diverse factors, including precipitation, evaporation, bare soil percentage area coverage, percentage crop cover, leaf area index, runoff, surface runoff, soil moisture, temperature, and total vegetated percentage cover, to predict future precipitation and evaporation, which was then used to calculate the Standardized Precipitation-Evaporation Index (SPEI) to evaluate drought characteristics. The second scheme directly used these ten factors and historical SPEI to predict future SPEI, further assessing future drought characteristics. By comparing the drought prediction results of the two schemes in terms of data statistics, drought characteristics, and spatial patterns, it was found that the LSTM model significantly improved accuracy when handling high-dimensional complex data and predicting key factors such as precipitation, evaporation, temperature, and soil moisture. The first scheme was more accurate when predicting severe and extreme droughts, whereas the second scheme was more sensitive to predicting moderate and mild droughts and exhibited higher stability and regularity in predicting the spatial variability of drought. In summary, LSTM has made significant improvements in the accuracy, stability, and reliability of drought prediction, providing stronger support for practical applications, such as agriculture and water resources management, and offering a new research tool for further climate change research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助卢柴千六采纳,获得10
4秒前
27秒前
程南发布了新的文献求助10
40秒前
冷静的访天完成签到 ,获得积分10
40秒前
xyzs完成签到,获得积分10
1分钟前
1分钟前
卢柴千六发布了新的文献求助10
1分钟前
xyzs发布了新的文献求助10
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
共享精神应助iu采纳,获得10
2分钟前
无花果应助iu采纳,获得10
2分钟前
科研通AI5应助iu采纳,获得10
2分钟前
卢柴千六完成签到,获得积分10
2分钟前
2分钟前
3分钟前
深情安青应助奇妙淞采纳,获得10
3分钟前
3分钟前
iu发布了新的文献求助10
3分钟前
3分钟前
hhh完成签到 ,获得积分10
3分钟前
Anthony Way发布了新的文献求助10
3分钟前
sailingluwl完成签到,获得积分10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI5应助康康XY采纳,获得20
4分钟前
李志全完成签到 ,获得积分10
4分钟前
时光倒流的鱼完成签到,获得积分10
4分钟前
4分钟前
康康XY发布了新的文献求助20
4分钟前
乐乐应助Hnuy采纳,获得10
4分钟前
康康XY完成签到,获得积分10
4分钟前
一切尽意,百事从欢完成签到,获得积分10
4分钟前
hongxuezhi完成签到,获得积分10
5分钟前
5分钟前
枷锁完成签到 ,获得积分10
5分钟前
Hnuy发布了新的文献求助10
5分钟前
star完成签到 ,获得积分20
5分钟前
6分钟前
6分钟前
棖0921发布了新的文献求助50
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600411
求助须知:如何正确求助?哪些是违规求助? 3169262
关于积分的说明 9560717
捐赠科研通 2875637
什么是DOI,文献DOI怎么找? 1578976
邀请新用户注册赠送积分活动 742322
科研通“疑难数据库(出版商)”最低求助积分说明 725161