SNPF: Sensitiveness-Based Network Pruning Framework for Efficient Edge Computing

计算机科学 修剪 卷积神经网络 人工智能 计算 推论 模式识别(心理学) 算法 农学 生物
作者
Yiheng Lu,Ziyu Guan,Wei Zhao,Maoguo Gong,Wenxiao Wang,Kai Sheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6972-6991
标识
DOI:10.1109/jiot.2023.3314820
摘要

Convolutional neural networks (CNNs) are used comprehensively in the field of the Internet of Things (IoTs), such as mobile phones, surveillance, and satellite. However, the deployment of CNNs is difficult because the structure of hand-designed networks is complicated. Therefore, we propose a sensitiveness based network pruning framework (SNPF) to reduce the size of original networks to save computation resources. SNPF will evaluate the importance of each convolutional layer by the reconstruction of inference accuracy when we add extra noise to the original model, and then remove filters in terms of the degree of sensitiveness for each layer. Compared with previous weight-norm based pruning methods such as “l1-norm”“, BatchNorm-Pruning”, and “Taylor-Pruning”, SNPF is robust to the update of parameters, which can avoid the inconsistency of evaluation for filters if the parameters of the pre-trained model are not fully optimized. Namely, SNPF can prune the network at the early training stage to save computation resources. We test our method on three prevalent models of VGG-16, ResNet-18, ResNet-50 and a customized Conv-4 with 4 convolutional layers. They are then tested on CIFAR-10, CIFAR-100, ImageNet, and MNIST, respectively. Impressively, we observe that even when the VGG-16 is only trained with 50 epochs, we can get the same evaluation of layer importance as the results when the model is fully trained. Additionally, we can also achieve comparable pruning results to previous weight-oriented methods on the other three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TRNA完成签到,获得积分10
刚刚
刚刚
关七应助吴昕奕采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
一念之间发布了新的文献求助10
3秒前
Hnuy完成签到,获得积分10
3秒前
可靠的书桃应助美好斓采纳,获得10
3秒前
4秒前
4秒前
ding应助着急的谷芹采纳,获得10
4秒前
4秒前
5秒前
Mint发布了新的文献求助10
5秒前
靓仔发布了新的文献求助10
5秒前
HT发布了新的文献求助10
7秒前
Akim应助wxyllxx采纳,获得30
7秒前
pwy完成签到,获得积分10
8秒前
苦哈哈发布了新的文献求助10
8秒前
8秒前
9秒前
传奇3应助yw采纳,获得10
9秒前
9秒前
ww发布了新的文献求助10
9秒前
流流完成签到,获得积分10
10秒前
LmaoAI完成签到 ,获得积分20
10秒前
文月九发布了新的文献求助10
10秒前
10秒前
10秒前
一念之间完成签到,获得积分10
10秒前
常大美女发布了新的文献求助10
11秒前
11秒前
火火发布了新的文献求助10
11秒前
12秒前
LmaoAI关注了科研通微信公众号
13秒前
hhh发布了新的文献求助10
13秒前
上官若男应助Dprisk采纳,获得30
13秒前
TRNA发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847