SNPF: Sensitiveness-Based Network Pruning Framework for Efficient Edge Computing

计算机科学 修剪 卷积神经网络 人工智能 计算 推论 模式识别(心理学) 算法 农学 生物
作者
Yiheng Lu,Ziyu Guan,Wei Zhao,Maoguo Gong,Wenxiao Wang,Kai Sheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6972-6991
标识
DOI:10.1109/jiot.2023.3314820
摘要

Convolutional neural networks (CNNs) are used comprehensively in the field of the Internet of Things (IoTs), such as mobile phones, surveillance, and satellite. However, the deployment of CNNs is difficult because the structure of hand-designed networks is complicated. Therefore, we propose a sensitiveness based network pruning framework (SNPF) to reduce the size of original networks to save computation resources. SNPF will evaluate the importance of each convolutional layer by the reconstruction of inference accuracy when we add extra noise to the original model, and then remove filters in terms of the degree of sensitiveness for each layer. Compared with previous weight-norm based pruning methods such as “l1-norm”“, BatchNorm-Pruning”, and “Taylor-Pruning”, SNPF is robust to the update of parameters, which can avoid the inconsistency of evaluation for filters if the parameters of the pre-trained model are not fully optimized. Namely, SNPF can prune the network at the early training stage to save computation resources. We test our method on three prevalent models of VGG-16, ResNet-18, ResNet-50 and a customized Conv-4 with 4 convolutional layers. They are then tested on CIFAR-10, CIFAR-100, ImageNet, and MNIST, respectively. Impressively, we observe that even when the VGG-16 is only trained with 50 epochs, we can get the same evaluation of layer importance as the results when the model is fully trained. Additionally, we can also achieve comparable pruning results to previous weight-oriented methods on the other three models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋太君完成签到,获得积分10
刚刚
郭慢慢发布了新的文献求助10
刚刚
1秒前
阿翔发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助20
1秒前
学术女战士完成签到,获得积分10
1秒前
淡淡的雪完成签到,获得积分10
2秒前
2秒前
2秒前
zgrmws应助外向小猫咪采纳,获得10
2秒前
2秒前
3秒前
xubobo完成签到,获得积分10
3秒前
华仔应助花开不败采纳,获得10
3秒前
mistletoe完成签到,获得积分10
3秒前
领导范儿应助路远采纳,获得10
3秒前
曲少完成签到,获得积分10
3秒前
爆米花应助普鲁卡因采纳,获得10
3秒前
4秒前
子车茗应助孤独如曼采纳,获得20
5秒前
Daisy发布了新的文献求助10
5秒前
5秒前
小离心机完成签到,获得积分10
5秒前
NexusExplorer应助zd采纳,获得10
6秒前
开朗紫完成签到,获得积分10
6秒前
6秒前
幽默身影发布了新的文献求助10
6秒前
天天快乐应助mhbknight采纳,获得10
6秒前
chun123完成签到,获得积分10
6秒前
6秒前
Judson发布了新的文献求助10
7秒前
在水一方应助於傲松采纳,获得10
7秒前
动听衬衫发布了新的文献求助10
7秒前
把拼好的饭给你完成签到,获得积分10
7秒前
psf01416完成签到,获得积分10
8秒前
斯利美尔完成签到,获得积分10
8秒前
唠叨的香芦完成签到,获得积分10
8秒前
小苏打完成签到,获得积分10
8秒前
顺心夜南应助Hh采纳,获得20
8秒前
汉堡包应助tingxiaomei采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997