SNPF: Sensitiveness-Based Network Pruning Framework for Efficient Edge Computing

计算机科学 修剪 卷积神经网络 人工智能 计算 推论 模式识别(心理学) 算法 农学 生物
作者
Yiheng Lu,Ziyu Guan,Wei Zhao,Maoguo Gong,Wenxiao Wang,Kai Sheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6972-6991
标识
DOI:10.1109/jiot.2023.3314820
摘要

Convolutional neural networks (CNNs) are used comprehensively in the field of the Internet of Things (IoTs), such as mobile phones, surveillance, and satellite. However, the deployment of CNNs is difficult because the structure of hand-designed networks is complicated. Therefore, we propose a sensitiveness based network pruning framework (SNPF) to reduce the size of original networks to save computation resources. SNPF will evaluate the importance of each convolutional layer by the reconstruction of inference accuracy when we add extra noise to the original model, and then remove filters in terms of the degree of sensitiveness for each layer. Compared with previous weight-norm based pruning methods such as “l1-norm”“, BatchNorm-Pruning”, and “Taylor-Pruning”, SNPF is robust to the update of parameters, which can avoid the inconsistency of evaluation for filters if the parameters of the pre-trained model are not fully optimized. Namely, SNPF can prune the network at the early training stage to save computation resources. We test our method on three prevalent models of VGG-16, ResNet-18, ResNet-50 and a customized Conv-4 with 4 convolutional layers. They are then tested on CIFAR-10, CIFAR-100, ImageNet, and MNIST, respectively. Impressively, we observe that even when the VGG-16 is only trained with 50 epochs, we can get the same evaluation of layer importance as the results when the model is fully trained. Additionally, we can also achieve comparable pruning results to previous weight-oriented methods on the other three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sad完成签到,获得积分10
1秒前
1秒前
2秒前
6秒前
魏琪完成签到,获得积分10
6秒前
ha完成签到,获得积分10
6秒前
陈露发布了新的文献求助10
7秒前
7秒前
星燃发布了新的文献求助10
7秒前
7秒前
充电宝应助高山我梦采纳,获得10
8秒前
uu关闭了uu文献求助
9秒前
10秒前
蜂蜜发布了新的文献求助10
10秒前
雷家完成签到,获得积分10
11秒前
影子发布了新的文献求助10
12秒前
12秒前
fzh完成签到,获得积分10
13秒前
14秒前
不过尔尔完成签到,获得积分20
14秒前
15秒前
芒果发布了新的文献求助10
16秒前
16秒前
田様应助gloooow采纳,获得10
19秒前
归尘发布了新的文献求助10
19秒前
高山我梦发布了新的文献求助10
20秒前
李行舟完成签到,获得积分10
22秒前
芒果完成签到,获得积分10
22秒前
负责的雨柏关注了科研通微信公众号
22秒前
小xiao发布了新的文献求助10
23秒前
24秒前
Owen应助完美的流沙采纳,获得10
26秒前
大个应助123456采纳,获得10
26秒前
希望天下0贩的0应助zj采纳,获得10
28秒前
28秒前
彭于晏应助moonbeam采纳,获得10
30秒前
蜂蜜完成签到,获得积分10
31秒前
夏夏发布了新的文献求助10
33秒前
HaroldNguyen完成签到,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517