深度学习
水流
人工智能
计算机科学
机器学习
超参数
地图学
流域
地理
作者
Kin‐Wang Ng,Yuk Feng Huang,Chai Hoon Koo,Kai Lun Chong,Ahmed El‐Shafie,Ali Najah Ahmed
标识
DOI:10.1016/j.jhydrol.2023.130141
摘要
Deep learning has emerged as a powerful tool for streamflow forecasting and its applications have garnered significant interest in the hydrological community. Despite the publication of several review articles on machine learning applications in streamflow forecasting, no review paper has yet focused explicitly on deep learning and its hybrid forms. This paper starts with some characteristics of deep learning models to provide a quick view of deep learning. Next, the configurations and characteristics of hybrid deep learning models, which is a hybridization of modeling techniques with deep learning, are discussed. Another vital role while implementing deep learning modeling is the methods applied for input and hyperparameter optimization. Finally, the limitations encountered in streamflow forecasting using deep learning models and recommendations for further research are outlined. This review covers related studies from 2017 to 2023 to provide the most recent snapshot of deep learning modeling applications in streamflow forecasting. These efforts are expected to contribute to the advancement of streamflow forecasting, potentially enabling more informed decision-making in water resource management.
科研通智能强力驱动
Strongly Powered by AbleSci AI