A review of hybrid deep learning applications for streamflow forecasting

深度学习 水流 人工智能 计算机科学 机器学习 流域 地图学 地理
作者
Kin‐Wang Ng,Yuk Feng Huang,Chai Hoon Koo,Kai Lun Chong,Ahmed El‐Shafie,Ali Najah Ahmed
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 130141-130141 被引量:86
标识
DOI:10.1016/j.jhydrol.2023.130141
摘要

Deep learning has emerged as a powerful tool for streamflow forecasting and its applications have garnered significant interest in the hydrological community. Despite the publication of several review articles on machine learning applications in streamflow forecasting, no review paper has yet focused explicitly on deep learning and its hybrid forms. This paper starts with some characteristics of deep learning models to provide a quick view of deep learning. Next, the configurations and characteristics of hybrid deep learning models, which is a hybridization of modeling techniques with deep learning, are discussed. Another vital role while implementing deep learning modeling is the methods applied for input and hyperparameter optimization. Finally, the limitations encountered in streamflow forecasting using deep learning models and recommendations for further research are outlined. This review covers related studies from 2017 to 2023 to provide the most recent snapshot of deep learning modeling applications in streamflow forecasting. These efforts are expected to contribute to the advancement of streamflow forecasting, potentially enabling more informed decision-making in water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子归来完成签到,获得积分10
刚刚
明眸完成签到,获得积分10
1秒前
自然1111发布了新的文献求助10
2秒前
2秒前
3秒前
罗永昊发布了新的文献求助10
3秒前
袁气小笼包完成签到,获得积分10
4秒前
4秒前
CC完成签到,获得积分10
4秒前
bkagyin应助刘梦婷采纳,获得10
5秒前
5秒前
方圆几里发布了新的文献求助30
5秒前
CodeCraft应助Yulin Yu采纳,获得10
5秒前
Matthewwt完成签到,获得积分10
5秒前
wanci应助冷艳招牌采纳,获得10
5秒前
公孙朝雨完成签到 ,获得积分10
5秒前
kirito发布了新的文献求助10
5秒前
乐哉完成签到,获得积分10
6秒前
正直无极发布了新的文献求助10
6秒前
狂野忆文完成签到,获得积分10
6秒前
7秒前
1243437374完成签到,获得积分10
7秒前
全糖完成签到,获得积分10
8秒前
8秒前
情怀应助THEEVE采纳,获得10
8秒前
zsyf完成签到,获得积分10
9秒前
9秒前
ding应助丁丽采纳,获得10
9秒前
10秒前
畅快成风发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
12秒前
jenningseastera应助狂野忆文采纳,获得10
12秒前
111完成签到,获得积分10
12秒前
xiaomu发布了新的文献求助30
13秒前
13秒前
13秒前
WXHL完成签到 ,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186